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Elastocapillary bending of microfibers around
liquid droplets†

Rafael D. Schulman,a Amir Porat,b Kathleen Charlesworth,a Adam Fortais,a

Thomas Salez,bc Elie Raphaëlb and Kari Dalnoki-Veress*ab

We report on the elastocapillary deformation of flexible microfibers in contact with liquid droplets.

A fiber is observed to bend more as the size of the contacting droplet is increased. At a critical droplet

size, proportional to the bending elastocapillary length, the fiber is seen to spontaneously wind around

the droplet. To rationalize these observations, we invoke a minimal model based on elastic beam theory,

and find agreement with experimental data. Further energetic considerations provide a consistent

prediction for the winding criterion.

1 Introduction
Wetting of liquids on fibrous materials is central to a wide variety of
natural and industrial phenomena such as the coalescence of wet
hairs,1,2 the drying of textiles,3 the altered mechanical properties of
dewy spider silk,4–6 the defense mechanism of a species of
beetle,7 and the bundling of carbon nanotubes and nanowires
during processing.8–11 In some of these examples, the fibers are
sufficiently flexible that capillary forces induce large-scale
deformations – a phenomenon also observed in other geometries
such as a drop contacting a flexible solid strip.12 The bending

elastocapillary length LBC ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Er3=g

p
is the natural length scale

that emerges when balancing elastic bending and capillarity,
where E is the Young’s modulus of the fiber, r is the fiber
radius, and g is the liquid–air surface tension.13,14 A slender
structure is significantly deformed by capillary forces if the
length scale over which these forces act is larger than LBC.13 To
understand the wetting of fibers, several model experiments
have been carried out, focusing on droplets between slender
flexible structures, where material stiffness and geometry dictate
the final wetting configuration.1,15–18

Despite its simplicity, even the problem of a single droplet
atop an undeformable cylinder is interesting as there are two

possible equilibrium states: an axisymmetric ‘‘barrel’’ configuration
and a non-axisymmetric ‘‘clam-shell’’.19–23 It is then not surprising
that the case of a flexible fiber interacting with a liquid is a rich
subject of study, showcasing complexity and stunning examples
of self-assembly.5,6,13,24–26 In a series of beautiful experiments,
droplets were placed on taut elastomeric fibers, and reached the
barrel configuration.5,6 With reduced tension, capillary forces
cause the fiber to buckle inside the droplet if the radius of the
latter exceeds roughly LBC. As the fiber is slackened, it coils
inside the droplet which acts as a windlass to maintain tension.
However, for a smaller droplet-to-fiber radius ratio, or for less-
wettable conditions, the clam-shell configuration may be more
favourable than the barrel.23 In such a case, a soft fiber may
instead wind around the surface of a droplet without experiencing a
buckling transition.13 As argued by Roman and Bico, the reduction
in surface energy upon winding exceeds the bending penalty if the
droplet radius is larger than BLBC. This is reminiscent of DNA
molecules wrapping around histone octamers to form compact
structures within the nucleus.13,27 When a droplet is wound by a
fiber, it changes from a spherical shape to a lens configuration in
which the fiber is positioned at the equator. Roman and Bico
focused on understanding the lenticular geometry but did not
experimentally test the winding criterion. Furthermore, there has
been no experimental work investigating the deformation below
the winding threshold.

In this paper, we study the elastocapillary bending of
microfibers induced through contact with liquid droplets. By
gradually increasing the droplet radius, experiments reveal that
fibers become increasingly bent around the droplet before the
winding criterion is met. We invoke a minimal model based on
elastic beam theory to quantitatively understand these observa-
tions. Using this model, we estimate the winding threshold,
and find it to be in agreement with data as well as a prediction
from simple energetic considerations. Finally, for adhesive
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b Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris,
PSL Research University, 75005 Paris, France

c Global Station for Soft Matter, Global Institution for Collaborative Research and
Education, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan

† Electronic supplementary information (ESI) available: Empirical evidence for the
scaling of l and d, a sample fit to extract the central radius of curvature of the fiber,
theoretical details, and justification for ignoring global droplet area changes in
determining the winding criterion. Also find a movie of an SIS fiber winding
around a droplet (scale bar corresponds to 200 mm). See DOI: 10.1039/c6sm02095j

Received 13th September 2016,
Accepted 2nd December 2016

DOI: 10.1039/c6sm02095j

www.rsc.org/softmatter

Soft Matter

PAPER

Pu
bl

ish
ed

 o
n 

02
 D

ec
em

be
r 2

01
6.

 D
ow

nl
oa

de
d 

by
 M

cM
as

te
r U

ni
ve

rs
ity

 o
n 

22
/0

6/
20

17
 1

4:
29

:2
7.

 

View Article Online
View Journal  | View Issue



This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 720--724 | 721

polymer fibers in the wound state, removal of the droplets
leaves behind self-assembled dry polymer microcoils.

2 Experimental methods
The fibers were made using two different materials: polystyrene
(PS) with molecular weight Mn = 25 kg mol"1 (Polymer Source Inc.),
which is a glass at room temperature; and styrene–isoprene–
styrene (SIS) triblock copolymer (14% styrene content, Sigma-
Aldrich), which is a physically crosslinked elastomer at room
temperature. PS fibers were made by dipping a micropipette
into a PS melt held at 170 1C and then quickly pulling the
pipette out, resulting in fibers with radii 2 mm o r o 6 mm, as
measured with optical microscopy. A similar procedure was
used to produce SIS fibers. However, the fibers were instead
pulled from a concentrated solution of SIS and toluene. The SIS
fibers were prepared with 5 mm o r o 25 mm. Fiber radii were
uniform to within 10% over the length used. The Young’s modulus
of PS is found in the literature to be 3.4 GPa,28 and the Young’s
modulus of SIS was determined to be 0.80 # 0.15 MPa by pulling
on fibers and measuring the resultant forces using a micropipette
deflection technique.29

The experimental setup for the PS fibers is depicted in
Fig. 1(a). Initially, both ends of a given fiber are taped to two
separate silicon pieces, which are pulled apart to hold the fiber
taut. A glass micropipette is used to support a glycerol droplet,
whose surface tension with air is g = 63 mN m"1.30,31 The
pipette is connected to a syringe filled with glycerol, which
allows us to precisely control the size of the droplet. The fiber is
then brought into contact with the liquid droplet. Once in
contact, the fiber is snipped at one end so that it is free to move
and no longer under tension. The system is imaged with an
optical microscope along the pipette axis and perpendicularly
to the fiber. Note that we work much below the capillary length,

such that gravitational effects can be safely ignored.13 A typical
optical image is shown in Fig. 1(b), where it is clear that the
fiber deforms through its interaction with the droplet. We can
analyze these images to extract the angle f through which the
fiber is bent, the droplet radius R – marginally modified by the
fiber since r { R – and the shape of the fiber in the contact
region, shown schematically in Fig. 1(c). Outside the region of
liquid contact, the fiber is straight.

3 Results and discussion
We begin the experiments with a relatively small droplet
(R B 250 mm), and observe that there is only a minor deformation
of the fiber. By applying pressure through the syringe the droplet
grows, and as a result, the fiber increases its contact with the
droplet, and the deformation angle f increases. The data are
shown in Fig. 2(a), in which f is plotted as a function of R for
different fiber radii r. We observe that for a given droplet radius,
thicker fibers exhibit smaller deformations, due to the higher
bending moduli. Since the bending of the fiber is caused by
the interaction with a liquid droplet, capillarity is the driving
mechanism. LBC is thus expected to be the relevant length scale
of the problem, as confirmed by the collapse of the data (within
error) in Fig. 2(b) where R is normalized by LBC.

Fig. 1 (a) Schematic of the experiment for PS fibers. (b) Optical image.
(c) Schematic of the tilted optical image with notations. (d) Idealized force
distribution within the contact region, as described in text.

Fig. 2 Deformation angle (Fig. 1(c)) of six PS fibers, of radii r as indicated,
as a function of: (a) the droplet radius; and (b) the droplet radius normalized
by the bending elastocapillary length. The vertical error bars are comparable
to the marker size. One representative horizontal error bar is shown. The
uncertainty in R/LBC is dominated by the error in the measurement of r, and
would thus be in the same direction for all the data of a given fiber. The solid
curve is the best fit to eqn (2) to small-f data where the scaling l p R is valid.
The dashed line corresponds to eqn (3) with Rf = R, using the fit parameters
(m,l) of Fig. 2(b) and 3.
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3.1 Elastic beam theory

Although the problem of a liquid droplet deforming an elastic
beam has been solved analytically in 2D,32 the 3D analogue is
considerably more complicated. Therefore, we focus on the
essential physical ingredients only and propose the following
minimal model. We consider an idealized force distribution
acting on the elastic fiber, in the contact region of length c, as
shown in Fig. 1(d). As seen in Fig. 1(b), at each of the two edges
of the contact region, there is a meniscus force pulling the
beam inwards towards the droplet. Due to its capillary origin,
this force is expected to scale as 2gd, where the factor 2
accounts for the two sides of one meniscus, and where d is a
length scale characterizing the lateral extent of the meniscus –
while incorporating as well an unknown dimensionless geometrical
prefactor of order unity. As d is expected to be substantially smaller
than R, we describe the meniscus force as being point-like. To
maintain a zero net force at equilibrium, there must also be a force
in the contact region pushing the beam outwards. For simplicity,
we assume it to be uniformly distributed with the linear density
f = 4gd/c whose integral over the contact region balances the
two meniscus forces. We note that torsion does not play a role
since the fiber is free at one end, and hence will not twist. We
may now solve for the fiber profile z(x) in the contact region,
invoking the small-deformation bending-beam equation:33

Bz0 0 0 0 = f, where the prime denotes the derivative with respect
to x, and where B = pEr4/4 is the bending modulus of the fiber.
Using the no-torque boundary condition z00(c/2) = 0, the origin
definition z(0) = 0, and the even symmetry z(x) = z("x), the
solution reads:

zðxÞ ¼ d‘3

prLBC
2

2

3

x

‘

" #4
" x

‘

" #2$ %
: (1)

From this solution, it is straightforward to determine the outer
slope tan(f/2) = "z0(c/2), and the central radius of curvature
Rf = "1/z00(0), that characterize the deformation. Motivated by
experimental data in the small-f limit (see ESI†), we further
assume the scale-separation relations: c = lR, and d = mr, where
l and m are dimensionless constants. In such a description, one
finally gets:

tan
f
2

& '
¼ 2ml2

3p
R

LBC

& '2

(2)

Rf

R
¼ p

2ml
LBC

R

& '2

: (3)

3.2 Comparing beam theory to data

From eqn (3), we confirm that f is a function of R/LBC only.
Furthermore, the best fit of eqn (3) to small-angle data (ft 151
and R/LBC o 0.25 where the scaling l p R is valid, see ESI†) is
shown in Fig. 2(b). We see that the fit describes the data well for
small f but fails to capture the large-angle data. This is to be
expected since a small-deformation theory was employed and
the contact region l deviates from the assumed scaling at large
deformation. Similarily, eqn (3) can be tested by measuring Rf,

the central radius of curvature of the fiber, for various experi-
ments (see ESI†). As shown in Fig. 3, the collapse of the data for
different fiber thicknesses is consistent with the prediction,
and the best fit to eqn (3) is excellent, even at large angles.
We assume the success at large angles is because Rf is a local
quantity in the central region where z0 is small. Moreover, from
the fit parameters, we find l E 0.7 and m E 21 for the two
unknown prefactors characterizing the contact and meniscus
lateral extents for a PS fiber. These values imply that the contact
region is comparable to the droplet size, while the meniscus is
roughly an order of magnitude larger than the fiber diameter.
These results are consistent with what we would expect from
the optical images (see ESI†). Finally, we note that if the
curvature of the fiber matches that of the droplet, this corre-
sponds to the fiber winding around the droplet. Thus, winding
should occur when Rf - R which, using eqn (3) and the values
of m and l, corresponds to R/LBC = 0.34 # 0.02 for PS. As
indicated by the vertical dashed line in Fig. 2(b), this prediction
is consistent with the data, as the winding angle appears to
diverge at this point.

3.3 Complete winding of fibers around droplets

Eqn (3) suggests that there is a critical droplet size for which
fibers will completely wind around the droplet. Indeed, we
verify experimentally that when a fiber is placed into contact
with a sufficiently large droplet, the fiber does spontaneously
wind as previously found by Roman and Bico.13 Roman and
Bico showed that this transition can be simply explained from
energetic considerations. Upon winding, the free energy of
the system can be written per unit length, with only two terms
(see ESI†): the surface energy of the system, which is negative
(i.e. reduced compared to the unwound state) due to contact
between the droplet and the fiber and scales like "gr, and an
energetic penalty associated with the bending of the fiber, which
scales like B/2R2. Winding occurs when it lowers the free energy of
the system, which results in the winding criterion R 4 aLBC, where
a depends on the details of the wetting geometry (see ESI†). In the
limit r { R, the microscopic wetting picture is equivalent to that of
a cylinder on the surface of a liquid bath, where the liquid surface

Fig. 3 Central radius of curvature of the fiber normalized by the droplet radius,
as a function of the droplet radius normalized by the bending elastocapillary
length. One representative set of error bars is shown. The vertical error is
dominated by the determination of Rf. The horizontal error bars are the same as
in Fig. 2. The solid curve corresponds to the best fit to eqn (3).
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is flat and Young’s law is satisfied (see ESI†). Considering this, we

find a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
(
16 sin yy þ p" yy

) *
cos yy

+ ,q
, where yy is the Young’s

angle of the liquid on the solid. Inserting the measured values of
yy, we finally evaluate aPS = 0.37# 0.01 and aSIS = 0.40# 0.01 for PS
and SIS respectively. The predicted value for PS compares closely
with the value of 0.34 # 0.02 attained from eqn (3).

To test the predicted winding threshold for PS, we utilize the
same experimental design as depicted in Fig. 1(a), and observe
whether or not the fiber spontaneously winds around the
droplet. This experiment allows us to construct a winding phase
diagram of R as a function of LBC as shown in Fig. 4(a). The
circular data points correspond to winding events and square
data points denote experiments in which no winding occurred.
The black line is the best fit to a phase boundary represented
by a line passing through the origin. From the fit, we extract
aPS = 0.34 # 0.04, which is in excellent agreement with the
energetically derived value of 0.37 # 0.01 and the value of
0.34 # 0.02 attained from eqn (3).

Since SIS has a modulus three orders of magnitude smaller
than PS, the bending elastocapillary length for the fiber radii
used is much smaller than for PS. Due to this, significantly
smaller droplets are required for the experiment and it no
longer becomes practical to suspend these droplets at the tip of
a micropipette. Instead, we keep the SIS fibers taut between two
supports and directly transfer a glycerol droplet onto the fiber.
In doing so, the droplet assumes a clam-shell configuration,22

but is close to spherical since R c r. Subsequently, the supports
are brought in closer together, and as the fiber slackens, the
droplet gets wound by the fiber if the droplet is sufficiently
large. Although there is some twisting of the fiber upon wind-
ing since it is clamped at both ends, torsion will make a
negligible contribution to the elastic energy because the fiber
is long. The resulting phase diagram is shown in Fig. 4(b). Once
again, the phase boundary is well fit by a line passing through
the origin. However, we find aSIS = 0.57 # 0.05, significantly
larger than the value predicted using energy considerations:
0.40 # 0.01. The origin of this discrepancy is likely due to the
fact that, in this case, the droplets are pendant on the taut fiber
which has no free ends for winding. In Fig. 5(a), we show a

sequence of images showcasing how winding occurs in this
geometry (see also movie in ESI†). In this sequence, it is evident
that the fiber not only bends when in contact with the droplet
(as in the PS case), but retains some curvature beyond the
contact patch. This additional bending cost must be included
in the energy argument leading to the winding criterion. From
the optical images, we note that the integrated curvature out-
side of contact is approximately equal to that in contact. Thus,
if we argue that the two bending costs are roughly equal in
magnitude (see ESI†), we arrive at aSIS B 0.56 as a rough
estimate, consistent with the experimentally measured value.

In the SIS experiments, as the supports are brought closer
together, the fiber continuously winds around the droplet. The
resulting fiber loops are packed closely together and produce
stunning coils. An example is shown in Fig. 5(b), where we
observe five tightly wound loops of fiber on the surface of a
droplet. As the SIS fibers are sticky, the liquid can be removed
(by, for instance, dissolving away the liquid in a volatile
solvent) while still leaving the fiber structure intact, as shown
in Fig. 5(c).

4 Conclusions
We have investigated the elastocapillary interaction between
liquid droplets and thin flexible fibers. The fibers develop a
contact region with the liquid and become deformed by capillary
forces. We quantify the resultant deformation and find the ratio
of the droplet size to the bending elastocapillary length to be the
relevant variable. To gain further insight into the fiber bending,
we present a minimal model based on elastic-beam theory,
which captures the scalings for the deformation angle and
central curvature of the bent fiber. Furthermore, fibers are seen
to spontaneously wind around droplets roughly larger than the
bending elastocapillary length. The winding criterion is correctly
predicted using the beam theory model but also independently
from simple energetic considerations.

Fig. 4 The winding phase diagram for (a) PS and (b) SIS fibers. Circle
markers denote winding events and square markers indicate experiments
where no winding occurred. The phase boundary (solid black line) is fit to a
straight line passing through the origin.

Fig. 5 (a) Image sequence of a pendant droplet being wound by an SIS
fiber (to be read: top row, left to right, bottom row, left to right). In the last
two frames, the fiber is wound once around the droplet but the system is
rotated to provide different perspectives. Scale bar = 200 mm. (b) Optical
microscopy image of an SIS fiber wound five times around a single droplet.
Scale bar = 100 mm. (c) Same as (b) after removing the droplet.
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S1 Analysis of Contact Region and Microfiber Shape

To analyze the wetting region between the droplet and the fiber, we begin by thresholding the image to black and white in MATLAB.
The bounds of the wetting region are inputted manually, and subsequently, the contour of this region is detected. As such, we can
extract the arc length of the contact region `. For several fiber radii, we plot the data for ` as a function of droplet radius in Fig. S1(a).
A solid line passing through the origin is drawn alongside the data. The line describes the low-R data very well, demonstrating that the
empirical scaling ` µ R in the low-f limit is valid. The data begins to deviate from this scaling when f & 15

�.
To validate our assumption that d µ r, we measure the length of the meniscus region from the images for several fiber radii with R

held roughly constant. The results of this analysis are displayed in Fig. S1(b), which shows that d increases with r. A solid line passing
through the origin is drawn to show that the data is consistent with the assumed scaling d µ r. For a given fiber, d is not found to depend
on R.

We may also fit the central part of this wetting region to a circle to extract R
f

. In these fits, we exclude the region nearest to where
the fiber exits contact with the liquid, as the fiber in this region is observed to be changing curvature towards becoming straight. A
sample fit is shown in Fig. S2, where the blue region corresponds to the contour detected through image analysis, and the red circle is
the fit to that data. We see that the central region of the fiber assumes a curvature of R

f

> R.

S2 Energetic Considerations of the Winding Criterion

As outlined by Roman and Bico1, the winding threshold can be predicted from simple energetic considerations. The transition can be
explained considering a two-state model where a fiber and a droplet are either in isolation or in the wound state. Upon winding, the
surface energy of the system is reduced due to contact between the droplet and the fiber by an amount �2gb r per unit length, where b
is a prefactor which depends on the details of the wetting geometry. Note that since we are in the regime r << R, the droplet remains
nearly spherical after being wound, and any change in surface energy due to a global change in shape of the droplet is neglible (as
will be demonstrated in the next section). The energetic penalty associated with winding around the droplet is an increase in bending
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Fig. S1 (a) The arc length of the wetted contact region between droplet and fiber as a function of droplet radius. The solid line is a straight line passing

through the origin to demonstrate that ` µ R is valid in the initial regime. (b) The meniscus size as a function of fiber radius. The solid line is a straight

line passing through the origin to demonstrate that d µ r is consistent with the data.

a Department of Physics and Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada. E-mail: dalnoki@mcmaster.ca
b Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
c Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.

1–4 | 1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2016



img15 click at the start (and above) and end point (directly on) the patch

2R

2Rf

200 μm

Fig. S2 A fiber being deformed by a droplet. The contour of the central region of the fiber in contact with the droplet is detected through image analysis

(blue) and fit to a circle (red circle).

energy of the fiber given by B/2R2 per unit length, where B = pEr4/4 is the bending modulus of the fiber. Thus, the total energy change
upon winding is:

DE =�2gb r+
pEr4

8R2

. (S1)

Winding occurs when it lowers the free energy of the system, which results in the winding criterion:

R > aL
BC

, (S2)

where a =
p

p/16b . To attain a prediction for b , we must consider the microscopic wetting geometry between the fiber and the droplet.
Since r << R, we describe the droplet as an infinite bath and the equilibrium wetting is attained in the same way as a cylinder on the
surface of a liquid bath, where the liquid surface is flat and Young’s law is satisfied. Overall, there is a loss of liquid-vapour and solid-
vapour interface in favour of a gain of solid-liquid interface. Considering this microscopic picture, we find b = sinqy +(p � qy)cosqy,
where qy is the Young’s angle of the liquid on the solid.

As explained in the main manuscript, for SIS we make the qualitative observation that the bending cost of the fiber not in contact
with the droplet is roughly equal in magnitude to the bending cost of the fiber being wet by the droplet. Thus, the bending cost upon
winding is now twice as large pEr4

4R2

whereas the gain in surface energy, �2gb r, is unchanged. Ensuring a reduction in the total energy
upon winding now yields a =

p
p/8b .

S3 Global Surface Energy Change Upon Winding

When considering the free-energy change upon the fiber winding the droplet, we only considered bending energy and wetting energy
between the fiber and the droplet. In doing so, we ignored any global changes in area as the droplet assumes a lenticular shape. To
justify this assumption, we must first examine the resultant lenticular shape which is depicted in Fig. S3 but was first discussed in 1.
As seen in Fig. S3(a), if we denote the radius of the initial droplet as R

0

, then the radius at the equator of the lens will be denoted R,
where in general R > R

0

to conserve volume. The radius of curvature of the spherical caps composing the lens will be denoted R
L

. In
Fig. S3(b), we draw the microscopic picture of the wetting between the liquid and the fiber in the wound state. The circular shape of
the beam is maintained as a result of a distribution of capillary forces: contact line forces g and Laplace pressure P

L

. Young’s angle is
satisfied between the solid and the liquid.

S3.1 The Lens Configuration

The lens configuration can be described through a force balance on the fiber. The net liquid force acting inwards per unit length is:

F
net,g = 2gsiny � 2g

R
L

�
2rsin(y +qy)

�
, (S3)

where y is denoted in Fig. S3. We can use the spherical cap identity R/R
L

= cosy to get:
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Fig. S3 (a) A droplet of initial size R
0

becomes a lens of equatorial radius R upon being wound by a fiber. The lens is composed of two spherical caps

which intersect the equator at an angle p/2�y. (b) A zoomed-in cross-sectional view of the dashed rectangular area in (a). P
L

denotes the Laplace

pressure and g indicates contact line surface tension forces.

F
net,g = 2gsiny � 4gr

R
�
cosy sin(y +qy)

�
. (S4)

To maintain a circular beam, the net force per unit length acting radially inwards must be 3B
rod

/R3 2. Thus, the lens configuration must
satisfy:

3pEr4

4R3

= 2gsiny � 4gr
R

�
cosy sin(y +qy)

�
. (S5)

In our experiments, we observe that the lens configuration appears almost completely spherical, i.e. y << 1. Thus, to proceed
further, we make the assumption y << 1, and will soon show that this is valid in our case. To first order, Eq. (S6) becomes:

3pEr4

4R3

⇡ 2gy � 4gr
R

�
ycosqy + sinqy

�
. (S6)

We can now isolate for y to arrive at:

y ⇡ r
R

3pL2

BC
8R2

+2sinqy

1� 2r
R cosqy

µ r
R
. (S7)

Therefore, we see that y scales as r/R. Since r << R in our experiments and LBC/R is on the order of unity, y << 1 is a valid assumption.

S3.2 Volume Conservation

Now we consider the global change in area of a droplet becoming a lens, as depicted in Fig. S3(a). We will limit our discussion to
y << 1. To conserve volume, it follows that R will only be slightly larger than R

0

, i.e. R = R
0

(1+d ), where d << 1. Thus, the statement
of volume conservation from a spherical droplet to the two spherical caps composing the lens reads:

4

3

pR3

0

=
2

3

p
⇣ R

cosy

⌘
3�

2�3siny + sin

3y
�
. (S8)

If we expand the right-hand side to second-order in d and y we find d ⇡ y/2.
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S3.3 Change in Area

The change in area (DA ) of the droplet can be written as:

DA = 2pR2

⇣
1+ tan

2

�p/2�y
2

�⌘
�4pR2

0

. (S9)

We expand DA to second-order in y and d , because as we will see, the first-order term will vanish:

DA ⇡ 2pR2

0

(1+d )2(2�2y +2y2)�4pR2

0

(S10)

DA ⇡ 4pR2

0

(1+2d �y +y2 �2dy +d 2)�4pR2

0

. (S11)

The zeroth-order terms cancel, and inserting d ⇡ y/2, we find the first-order terms vanish as well, and we are left with:

DA ⇡ pR2

0

y2 = p
✓

R
1+d

◆
2

y2 ⇡ pR2y2 , (S12)

up to second-order in y. Since we know that y µ r/R, we see that DA µ R2(r/R)2 ⇠ r2. Therefore the change in surface energy from
global area changes is DEA ⇠ gr2. However, the change in surface energy due to wetting is DE

w

= �2grb (2pR) ⇠ rR for one complete
wind, where b depends on the microscopic wetting picture and is of order unity. Since r << R, we see that DE

w

⇠ rR >> DEA ⇠ r2, and
we can neglect any global changes in area.
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