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Thin viscous liquid films driven by capillarity are well described in the lubrication the-
ory through the thin film equation. In this article, we present an analytical solution of
this equation for a particular initial profile: a stepped perturbation. This initial condi-
tion allows a linearization of the problem making it amenable to Fourier analysis. The
solution is obtained and characterized. As for a temperature step in the heat equation,
self-similarity of the first kind of the full evolution is demonstrated and a long-term
expression for the excess free energy is derived. In addition, hydrodynamical fields
are described. The solution is then compared to experimental profiles from a model
system: a polystyrene nanostep above the glass transition temperature which flows
due to capillarity. The excellent agreement enables a precise measurement of the cap-
illary velocity for this polymeric liquid, without involving any numerical simulation.
More generally, as these results hold for any viscous system driven by capillarity, the
present solution may provide a useful tool in hydrodynamics of thin viscous films.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763569]

I. INTRODUCTION

Micro- and nanofilms are of tremendous importance in a variety of scientific fields,1–3 such
as polymer physics, physiology, biophysics, micro-electronics, surface chemistry, thermodynamics,
or hydrodynamics. For instance, they are involved in modern mechanical and optical engineering
processes, through lubrication, paints, and coating. Gaining a complete understanding of these
systems is a key step towards the development of molecular electronics, biomimetics, superadhesion,
and self-cleaning surfaces.

Thin films furthermore remain of fundamental interest in physics and mathematics, as they
raise important questions that are still unsolved. The example of polymer systems, which we will
preferentially refer to throughout the present article, is enlightening on this very point. As far as
rheology of ultra-thin polymer films is concerned, when the height of the film is comparable to the
characteristic size of the macromolecule, scaling arguments have been proposed for the effective
viscosity.4 Several of the recent experimental results that have been obtained motivate the desire
for a fundamental understanding of polymers in confinement. Examples are the enhancement of the
effective mobility in the liquid5 and glassy state,6 and long-term relaxation of bulk viscosity.7 The
modification of polymeric conformations8 and interchain entanglements9, 10 near surfaces, and in
confined geometries,11 have been studied in detail. Surface instabilities and pattern formation have
been explored as well.12–14 Moreover, the role of film preparation has been investigated15, 16 but
remains complex, as pointed out in the particular case of the glass transition temperature.17, 18

The systems discussed above are often well described by the lubrication theory through capillary-
driven thin film equations.1, 2 However, due to their high orders and nonlinearities, these particular
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FIG. 1. A schematic showing the capillary levelling of an initially stepped perturbation with amplitude δ0 atop a thin viscous
film of height h0. The vertical profile h(x, t) of the free surface depends only on the horizontal coordinate x and time t.

equations have not yet been solved analytically. Nevertheless, the reader will find details on the
mathematical advances in recent reviews.19, 20 In addition, we point out the fact that thin film
equations have been solved numerically in various configurations.21, 22

In the present communication, we address the analytical problem of a stepped perturbation atop
a flat film (shown schematically in Fig. 1) which is infinite in the two horizontal dimensions. The
interest in this system is twofold. First, it is physically relevant since it is inspired by experiment.23, 24

Second, it is mathematically interesting since the smallness of the step in comparison to the under-
lying film height allows one to linearize the thin film equation and solve it through Fourier analysis,
as for the heat equation.25

This study is divided into three parts. In the first one, we recall the main ingredients of the
physical model, including the general nonlinear thin film equation for two-dimensional capillary-
driven flows. In the second part, we explicitly consider the stepped perturbation, for which we obtain
and characterize the linear solution. Finally, in the third part, we compare the theoretical results to
experiments performed on a polystyrene (PS) stepped film above the glass transition temperature.

II. PHYSICAL FRAMEWORK

In this section, we describe the physical model that is considered. After justifying the main
assumptions and giving the boundary conditions for the flow, we derive the general nonlinear thin
film equation in two dimensions.

A. Assumptions

We consider the example of PS nanofilms above their glass transition temperature Tg ∼ 100 ◦C,
since this experimental system will be compared to the theory in Sec. IV. We thus have the following
typical parameters:26–28 vertical height h0 ∼ 1 µm, dynamical viscosity η ∼ 1 MPa s, molecular
weight Mw ∼ 15 kg mol−1, surface tension γ ∼ 30 mN m−1, density ρ ∼ 1 g cm−3, and shear
modulus G ∼ 1 MPa. Extension to any thin viscous fluid is straightforward by using the corresponding
relevant orders of magnitude.

Let us first estimate the typical spreading capillary velocity vc, Reynolds number Re, capillary
length lc, and Maxwell viscoelastic time τM,

vc = γ

η
∼ 2 µm min−1, (1a)

Re = h0ρvc

η
$ 1, (1b)

lc =
√

γ

ρg
∼ 2 mm % h, (1c)

τM = η

G
∼ 1 s. (1d)
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From these orders of magnitude, and since we typically observe slow evolution of the profiles over
several minutes,23, 24 we can make the following assumptions: we have an incompressible flow of
a highly viscous Newtonian fluid, where gravity,29 disjoining pressure,30 and inertia are negligible.
Therefore, this flow is well described by the Stokes equation

∇ P = η&v, (2)

combined with the incompressibility condition

∇ · v = 0, (3)

where P and v are the local pressure and velocity fields in the liquid. In addition, we assume
that the profile slopes remain small in comparison to 1, which is an ingredient of the lubrication
approximation. Finally, we take γ and η as homogeneous and constant. Note that the case of
inhomogeneous surface tension is considered in Refs. 1 and 2 and that we neglect confinement
effects4–6 since the film height is still large in comparison with the size of the macromolecule,
typically ∼10 nm for the considered molecular weight.

B. Vertical boundary conditions

We consider the case of no shear at the liquid-air interface

∂zv|z=h = 0, (4)

where z is the vertical coordinate. In addition, we assume no slip at the substrate

v‖|z=0 = 0, (5)

with v‖ the component of the velocity parallel to the liquid-substrate interface.

C. Thin film equation

In addition to the assumptions and the vertical boundary conditions presented in the previous
parts, we assume a spatial invariance along one horizontal direction y. We then have a pure two-
dimensional problem. Therefore, the height of the free surface is given by h(x, t), where x is the
relevant horizontal direction and t the time. The local pressure field is a priori given by P(x, z, t).
According to the lubrication approximation, we can neglect the vertical velocity with respect to the
horizontal one and write: v = v(x, z, t) ex, where ex is the horizontal basis vector. Then, we project
and integrate Eq. (2), using Eqs. (3)–(5), and we find

∂z P = 0, (6)

the local pressure field P(x, t) is thus invariant in the vertical direction, and

v(x, z, t) = 1
2η

(z2 − 2hz) ∂x P, (7)

which corresponds to the usual parabolic Poiseuille flow. Volume conservation requires that

∂t h + ∂x

∫ h

0
dz v = 0. (8)

Finally, because the pressure does not depend on z (see Eq. (6)), it can be evaluated at the free surface
through the Young-Laplace equation. Since the lubrication approximation implies small curvatures,
the pressure satisfies

P − P0 ≈ −γ ∂ 2
x h, (9)

where P0 is the atmospheric pressure. Thus, combining Eqs. (7)–(9), we get

∂t h + γ

3η
∂x

(
h3∂ 3

x h
)

= 0, (10)

which is known1, 2, 15, 21, 31 as the capillary-driven thin film equation.
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III. STEPPED PERTURBATION

In the present section, we consider an infinitesimal perturbation δ(x, t) $ h0 of the free surface
on an infinitely large and flat thin film with height h0 (see Fig. 1). We thus linearize the thin film
equation, before nondimensionalizing the problem and giving its general formal solution through
Fourier analysis. Then, we consider a simple initial profile: a stepped film, for which we express
and characterize the solution. In particular, we demonstrate self-similarity of the first kind of the full
evolution and we study the long-term viscous dissipation of the excess free energy, before describing
the hydrodynamical fields of the problem.

A. Linearized thin film equation

In the following, we restrict ourselves to the linearized version of the thin film equation. Setting

h(x, t) = h0 + δ(x, t), (11)

Eq. (10) becomes

∂tδ + γ h 3
0

3η
∂ 4

x δ = 0, (12)

to first order in the perturbation. Apart from the higher order in the spatial derivative, this equation
is analogous to the heat equation.25

B. Nondimensionalizing

For generality, we introduce the typical height h0 and time t0 = 3ηh0/γ of the problem, as well
as the associated dimensionless variables

& = δ

h0
, (13a)

X = x
h0

, (13b)

T = t
t0

. (13c)

We nondimensionalize Eq. (10) and obtain

∂T & + ∂ 4
X & = 0. (14)

C. Formal general solution

Injecting a propagating mode ei(K X−(T ), of angular frequency ( and angular wavenumber K,
into Eq. (14) leads to the dispersion equation

( = −i K 4, (15)

which implies, in particular, that spatial oscillations with small wavelengths decay in amplitude
faster than those with large wavelengths. Since Eq. (14) is linear, we can write the general solution
as a superposition in the Fourier basis. Using Eq. (15), it follows that

&(X, T ) =
∫ +∞

−∞

d K√
2π

A(K ) e−K 4T eiK X , (16)

where A(K) is the spatial Fourier transform of the initial profile

A(K ) =
∫ +∞

−∞

d X√
2π

&(X, 0) e−iK X . (17)
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D. Solution for a stepped initial condition

We consider now the particular ideal case where the initial profile is a step proportional to the
Heaviside function *

&(X, 0) = &0 *(X ), (18)

through a dimensionless amplitude &0 = δ0/h0.
Under the initial condition of Eq. (18), Eq. (16) becomes

&(X, T ) = &0

2
[1 + ψ(X, T )] , (19)

where we shifted the vertical origin and normalized the amplitude through the centered profile

ψ(X, T ) = −
∫ +∞

−∞
d K

e−K 4T

iπ K
eiK X , (20)

and where the dashed integral represents Cauchy’s principal value.

E. Limits and symmetry

First, Eq. (20) naturally reduces to the sign function at T = 0, as required from the initial
condition through Eq. (18). Second, the energy cost associated with the surface perturbation is
viscously dissipated and the final equilibrium state is thus flat at finite X,

lim
T →+∞

&(X, T ) = &0

2
. (21)

Third, at finite T, using Cauchy’s residue theorem and Jordan’s lemma, and provided we can perform
an inversion of limits, we obtain

lim
X→+∞

&(X, T ) = &0, (22a)

lim
X→−∞

&(X, T ) = 0. (22b)

This important result tells us that the horizontal boundary limits remain those of the initial
profile all along the evolution, which stresses the fact that the boundary limits of the initial profile
are crucial in defining the symmetry of the shape. Moreover, the levelling does not contaminate the
infinite horizontal limits at finite time, as expected.

Finally, there is a fixed point at X = 0, along the temporal evolution

&(0, T ) = &0

2
, (23)

which is a center of symmetry because ψ is an odd function with respect to X.

F. Self-similarity

At finite T, let us change variables through

X = U T 1/4, (24a)

K = Q
T 1/4

. (24b)

Thus, Eq. (20) becomes

ψ(X, T ) = χ (U ), (25a)

= −
∫ +∞

−∞
d Q

e−Q4

iπ Q
eiQU . (25b)
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Therefore, with the initial profile considered, the full evolution is self-similar of the first kind:32

it depends only on the variable U and the profile satisfies the following equation:33

χ ′′′′ = U
4

χ ′, (26)

whose integral has been studied in the mathematical literature.34, 35 Once again, this equation is
analogous to the one obtained with self-similar solutions in XT−1/2 for the heat equation,25 apart
from the order of the derivative on the left-hand side. Note that the self-similarity introduced in
Eqs. (24) and (25a) is highly dependent on Eq. (22), and thus on the boundary limits of the initial
profile. Different boundary limits would lead to different forms of self-similarity.36 In fact, we see
through Eq. (16) that the condition for such a self-similarity of the solution is that the Fourier
transform of the initial profile is positive homogeneous of degree −1,

A(αK ) = α−1 A(K ), (27)

for α > 0. In other words, according to Eq. (17),

&(αX, 0) = &(X, 0). (28)

Therefore, the initial profile has to be a constant function with a potential discontinuity at X = 0,
i.e., the self-similarity considered can only be achieved if there is a step initially, which justifies
a posteriori the interest of this configuration. In addition, note that these results are analogous to the
ones obtained for the heat equation25 with a temperature step, except for the precise time exponent
which is related to the order of the spatial derivative in the governing equation. In this picture, we
see that the final equilibrium state (see Eq. (21)) and fixed point (see Eq. (23)) values are unified
into a single point of the self-similar profile

χ (0) = 0. (29)

Moreover, the profile is symmetric with respect to this particular central point

χ (−U ) = −χ (U ). (30)

Finally, we see through Eq. (25b) that χ is proportional to the inverse Fourier transform of the
function Q -→ Q−1e−Q4

. Therefore, the solution is

χ (U ) = 2.(5/4)
π

U Fα(U ) − .(3/4)
12π

U 3 Fβ(U ), (31)

where we introduced two auxiliary functions for clarity

Fα(U ) = 1F3

({
1
4

}
,

{
2
4
,

3
4
,

5
4

}
,

(
U
4

)4
)

, (32a)

Fβ(U ) = 1F3

({
3
4

}
,

{
5
4
,

6
4
,

7
4

}
,

(
U
4

)4
)

, (32b)

with the definition of the (1, 3)-generalized hypergeometric function37, 38

1F3 ({a}, {b, c, d}, w) =
∑

k≥0

(a)k

(b)k(c)k(d)k

wk

k!
, (33)

and the Pochhammer symbol (.)k of the rising factorial. Note that the self-similar dimensionless
solution in Eq. (31) is unique: it depends only on the variable U and thus not on the experimental
parameters h0, δ0, γ , η, and t.

Figure 2 shows &/&0 as a function of X for various times. As we can see, the profile flattens
through time as the excess surface energy is viscously dissipated. Apart from the oscillatory behavior
linked with the fourth spatial derivative of Eq. (14), this evolution is qualitatively close to the solution
of the heat equation25 for which the same analytical treatment would lead to the usual error function.
At fixed time T, the spatial oscillatory behavior (see inset of Fig. 2) is qualitatively analogous to the
temporal response of a damped harmonic oscillator after having switched on an external constant
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FIG. 2. Solution of Eq. (14) for a stepped initial profile (see Eq. (18)) at various dimensionless times, according to
Eqs. (19), (24a), (25a), and (31). The profiles are symmetric with respect to the central fixed point, according to Eq. (30). The
self-similar profile is naturally identical to the real profile at T = 1, since χ (U) = ψ(U, 1) according to Eqs. (24a) and (25a).
The inset shows a zoom of the first oscillations for X > 0, in the T = 1 profile.

load, although the spectrum is different according to Eq. (20). Finally, plotting the same data with
respect to the self-similar variable U, instead of variable X for a given parameter T, would allow to
collapse all the data onto the &(U, 1) profile since χ (U) = ψ(U, 1), by construction.

G. Extrema

Let us now consider the amplitude of the oscillatory behavior. A local extremum at U ∗
i of the

self-similar profile is defined by χ ′(U ∗
i ) = 0. So we write
∫ +∞

−∞
d Q e−Q4

eiQU ∗
i = 0. (34)

It is straightforward to see that χ ′(−U ∗
i ) = 0 as well, and that χ ′′(−U ∗

i ) = −χ ′′(U ∗
i ). Therefore,

each local maximum (minimum) has a mirror minimum (maximum), whose horizontal coordinate
is symmetric with respect to U = 0. This is trivial when recalling the symmetry of the profile
through Eq. (30). Interestingly, Eq. (34) implies that U ∗

i is independent of &0: the amplitude of the
perturbation only shifts the vertical origin and stretches vertically the self-similar function χ . This
scaling invariance of the solution is not expected to hold for the general nonlinear thin film equation,
due to the cubic dependency on the profile height (see Eq. (10)).

We now focus on two mirror extrema indexed by i and whose coordinates are: [U ∗
i ,χ (U ∗

i )] and
[−U ∗

i ,χ (−U ∗
i )], with U ∗

i > 0. By introducing the ratio

R =
∣∣∣∣

χ (U ∗
i ) − χ (+∞)

χ (−U ∗
i ) − χ (−∞)

∣∣∣∣ , (35)

and by invoking the symmetry of the profile through Eq. (30), we naturally get

R = 1, (36)

which is indeed observed in Fig. 2. An important feature is that this ratio does not depend on the
amplitude of the perturbation &0. This scaling invariance of the solution does not hold for the general
nonlinear thin film equation,24 due to the cubic dependency on the profile height (see Eq. (10)).
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H. Excess free energy

In order to characterize the relaxation to equilibrium, we study the long-term evolution of the
capillary free energy (per unit length along y) in excess of the equilibrium flat profile. At large time
and thus small slopes, this quantity satisfies

&F ≈ γ

2

∫
dx (∂xδ)2 . (37)

Rewriting Eq. (37) in dimensionless variables through Eq. (13) gives

&F = γ h0

2

∫
d X (∂X&)2 . (38)

Finally, invoking the variable U from Eq. (24a) leads to the desired long-term expression

&F
&F0

= ξ
(τ

t

)1/4
, (39)

where we introduced the initial excess capillary energy &F0 = γ δ0, and the characteristic time

τ = ηδ 4
0

γ h 3
0

, (40)

as well as a constant numerical factor

ξ = 31/4

8

∫
dU χ ′2(U ) ≈ 0.16. (41)

The final relation comes from a calculation of the integral
∫
χ ′2 ≈ 1, using Eq. (31). Although the

geometrical dependencies of this result are only limits of the nonlinear case, the dependencies on
material properties do hold in the nonlinear case.24 This important long-term result teaches us that
the surface energy is viscously dissipated with a 1/4 power-law in the inverse time, and that the
initial geometry plays the crucial role of a driving amplitude.

I. Hydrodynamical fields

Using the solution obtained in Eq. (31), we now derive the expressions of the pressure and
velocity fields in real variables, as well as the corresponding volumetric flow rate. As for the
previous treatment of energy, using Eqs. (7), (9), (11), (13), (19), (24a), and (25a), we find

P(x, t) = P0 − χ ′′(U )
(

3ηγ δ 2
0

4h 3
0 t

)1/2

, (42)

and

v(x, z, t) ≈ 33/4

4
χ ′′′(U )

(
γ δ 4

0

ηh0t3

)1/4 (
2z
h0

− z2

h 2
0

)
, (43)

to lowest order in the perturbation. In particular, the velocity at the central fixed point x = 0 satisfies

v0(z, t) ≈ −0.1
(

γ δ 4
0

ηh0t3

)1/4 (
2z
h0

− z2

h 2
0

)
, (44)

where we calculated the numerical factor through Eq. (31). The minus sign is expected due to the
chosen geometry (see Fig. 1). Interestingly, we see that the amplitude of the parabolic velocity
profile, i.e., the surface velocity, decreases with time, viscosity and film height, and that it increases
with surface tension and amplitude of the perturbation. Then, by integrating Eq. (43) over z, we
obtain the volumetric flow rate (per unit length in the y-direction)

Q(x, t) ≈ 1
2

χ ′′′(U )
31/4

(
γ δ 4

0 h 3
0

ηt3

)1/4

, (45)
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to lowest order in the perturbation. Thus, at the central fixed point x = 0, we have

Q0(t) ≈ −0.07
(

γ δ 4
0 h 3

0

ηt3

)1/4

. (46)

The dependencies are the same as for the velocity field, except for the film height: when h0 tends to
infinity the flow diverges, as expected, whereas the velocity tends to zero.

IV. COMPARISON WITH EXPERIMENTS

In this section, we compare the analytical solution obtained in Sec. III to a model experiment:23, 24

a PS stepped perturbation above the glass transition temperature (see Fig. 1). In particular, we fit the
profiles to the solution of Eq. (31). As we finally see, this procedure enables an accurate measurement
of the capillary velocity of the material.

A. Self-similarity

Knowing the profile δ(x, t) and the film height h0 for a given experimental sequence, it is
straightforward to obtain the experimental equivalents (in real variables) of Eq. (13a),

&e(x, t) = δ(x, t)
h0

, (47)

and of Eq. (19),

ψe(x, t) = 2
δ(x, t)

δ0
− 1. (48)

We checked the self-similarity by plotting the experimental profiles as a function of the real self-
similar variable24

u = x
t1/4

. (49)

When doing so, the profiles at different times collapse onto a single profile

ψe(x, t) = χ e(u), (50)

thus demonstrating the self-similarity of the first kind of the experimental evolution. This result
appears in Fig. 3.

B. Fitting the profiles

When comparing the profiles χ e(u) from the experiment (see Eq. (50)) and χ (U) from the theory
(see Eq. (31)), we immediately see that a horizontal stretch factor remains due to the nondimension-
alizing procedure. In fact, according to Eqs. (13), (24a), and (49), we have

U =
(

3η

γ h 3
0

)1/4

u. (51)

We thus fit all the experimental profiles χ e(u) to the theoretical one χ (U) through this single free
parameter. The result is plotted in Fig. 3 for various h0, δ0, and t.

The agreement is excellent and holds for height ratios up to δ0/h0 ∼ 10%. In particular, we
see that the experimental profiles plotted this way do not depend on h0, δ0, and t, as suggested by
the theory. The fact that the scaled profiles are independent of the stepped film geometry confirms
the uniqueness and self-similarity of the dimensionless solution. Furthermore, since we know h0

experimentally, this single parameter fitting procedure offers a precise measurement of the capillary
velocity γ /η of the material at the considered temperature. We find γ /η = 1.5 ± 0.1 µm min−1 at
120 ◦C, which compares well with the tabulated values26, 39 through the WLF model.40

As a final remark, we note that the initial stepped profile seems in contradiction with the lubri-
cation approximation used in the theory. Thus, the short-term evolution of the experimental profile
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FIG. 3. Comparison between theory (see Eq. (31)) and experiments (see Eq. (50)). The experimental profiles correspond
to AFM lines taken at room temperature after quenching from 120 ◦C. PS stepped films were prepared as detailed in
Refs. 23 and 24. The experimental data represent steps with different heights {h0, δ0} in nm, as indicated. The profiles are
recorded after t = 10 min of annealing; exceptions are for: {1063, 100}, where there are three profiles corresponding to
t = 6, 8, and 10 min; and for {924, 57} where there are two profiles corresponding to t = 10 and 20 min. There is only one
free horizontal stretching parameter in this comparison, which leads to a measurement of the capillary velocity: γ /η = 1.5
± 0.1 µm min−1, according to Eq. (51).

may not be described by the theoretical solution in Eq. (31). However, as observed experimentally,
the step levels due to Laplace pressure gradients and reaches small slopes on a timescale that is short
in comparison to the one of all the experimental observations. Furthermore, the experimental profiles
connect rapidly to the theoretical solution. Therefore, the possible temporal offset is negligible in
comparison with the typical experimental times and does not reduce the precision on the capillary
velocity measurement.

V. CONCLUSION

We reported on an analytical solution of the linear thin film equation for a stepped initial
condition. The solution was obtained by performing Fourier analysis and involved generalized
hypergeometric functions. We characterized the solution and demonstrated the self-similarity of
the first kind of the full evolution. In addition, we found the origin of this symmetry in the initial
profile itself. Then, using self-similarity, we derived the long-term viscous dissipation law in such
a linear system. This scaling captures the relevant physical ingredients and provides a limit for the
corresponding expression in the nonlinear theory. We also derived the scaling expressions for the
pressure and velocity fields and for the volumetric flow rate. As far as the linearized equation is
concerned, apart from the well known case of the heat equation, we suspect that hypergeometric
solutions may be obtained in an identical way for higher even orders of the spatial derivative in
the linear equation. However, the odd orders being free from dissipation are expected to lead to
fundamentally different mathematical solutions. Finally, we compared the solution to experimental
profiles obtained on polystyrene stepped films for several times, and height ratios up to ∼10%.
The agreement is excellent, thus demonstrating the interest of such a solution in the physics of
capillary-driven thin viscous films. In particular, the fitting technique offers a precise viscometer
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without invoking any numerical simulation. In the near future, these results may be extended to other
initial conditions and to the first nonlinear term of the equation through perturbation theory. The
goals would be to study the convergence to intermediate self-similarity and to capture the nonlinear
extension of the present results in order to approach the full nonlinear solution, which is still an open
analytical problem that governs a considerable number of exciting physical applications.
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