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Dynamic force patterns of an undulatory microswimmer
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We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using
micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to
the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which
we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical
predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the
forces that we measure, which well describes our data.
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Locomotion through a fluid environment is common to
organisms over a wide range of length scales, from whales
and humans to primitive algae and bacteria. However, the
physics of “microswimming,” which is the propulsion at very
small length scales, differs vastly from that applicable to
macroscopic swimmers. Studying the principles of locomotion
in this regime is crucial for our fundamental understanding
of a diverse collection of organisms, including bacteria,
sperm, and a variety of other microorganisms. Furthermore,
microswimmers offer a wide variety of applications including
robotic microswimmers capable of cargo towing for biomedi-
cal purposes, such as advanced drug targeting [1,2], collective
swimming of bacteria to induce mixing in microfluidic devices
[3,4], and fluid pumping [5–7].

The Reynolds number is a quantity that measures the
relative magnitude of viscous and inertial forces in a fluid.
At small length scales, the Reynolds number is typically less
than unity, which implies that viscous forces are dominant and
inertia can be neglected. In addition, to achieve propulsion in
this regime, it is obligatory to perform a motion that is not
time reversible, according to the scallop theorem [8]. This
theorem asserts that if a swimmer performs a sequence of
motions that is unchanged when played in reverse, such as a
scallop, which simply opens and closes, it will not acquire any
net displacement. There are numerous ways of breaking this
symmetry, such as the helical beating of a flagellum [8–10],
and motions similar to a human breast stroke, as is performed
by the simple alga cell Chlamydomonas reinhardtii [11,12].
Another common way to break this symmetry is to propagate
traveling waves down a body, which is successfully achieved
by undulatory swimmers [13–16].

Undulatory locomotion is known to be a very efficient
mechanism of propulsion and is effective over a large range of
length scales [17]. Extensive theoretical efforts have been put
forth in understanding the locomotion of a slender undulator,
in which the length of the swimmer is much larger than its
width [10,15,16,18,19]. Among these, resistive force theory
(RFT) is a simple model in which the viscous force on a
body segment moving through a low Reynolds number fluid
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can be decomposed into a component tangential and normal
to that segment [10,15,16,18,20]. Each of these components
is linearly proportional to the speed of the segment in
that direction and related through the normal and tangential
drag coefficients, cN and cT. The ratio cN/cT has important
implications in the propulsion of the swimmer. Namely, if
cN/cT > 1, propulsion is directed contrary to the direction of
the traveling wave. If cN/cT < 1, we are faced with the curious
case of the undulator moving in the same direction as its
traveling wave, while the swimmer can attain no net propulsion
if cN/cT = 1. In RFT, the difficulty lies in determining the
drag coefficients. Several theoretical studies have derived
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FIG. 1. (Color online) (a) C. elegans. The scale bar represents
100 μm. (b) Time lapse of the worm’s centerline over one period
(T ), with colors representing time. A sample centerline is overlaid on
the worm in black. Arrows indicate motion of the end of the pipette
as a result of the two orthogonal forces. The scale bar represents
150 μm. (c) Schematic of the micropipette used in our experiments
with a worm held at the end (not to scale). (d) Curvature color plot
for the swimming. BC (body coordinate) denotes the distance along
the worm, where 0 represents the head and 1 represents the portion
of the worm nearest the pipette. Positive curvatures are indicated by
lighter color and denote the convex side to the left.
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values for the coefficients; however, assumptions regarding the
swimming and approximations must be made [10,15,18,20].
Indeed, experimental measurements are crucial in order to
evaluate the validity of RFT and to determine the magnitude
of the drag coefficients. There have been experiments which
have evaluated RFT for a variety of single-celled organisms
using kinematic data from high-speed imaging [21–23]. Other
experiments have performed average force measurements
of nonundulatory microorganisms in optical traps [24,25].
However, to date, direct and time-resolved measurements of
drag forces on an undulating microswimmer are still lacking.
Furthermore, direct verification of the applicability of RFT for
swimmers at length scales where the Reynolds number may
not be much less than unity is still needed.

Many experiments on undulatory microswimmers have
focused on the model organism Caenorhabditis elegans
[Fig. 1(a)], a millimeter sized hermaphroditic nematode [26].
These studies have characterized the kinematics of C. elegans
in various environments, including swimming in a buffer of
various viscosities [27,28], viscoelastic media [29], crawling
on agar [30], structured environments [31,32], and through
complex environments such as granular materials [33,34].
Attempts have been made to measure crawling forces using
pillars as force transducers for C. elegans crawling on agar
[35,36]. In another work, the viscous forces of swimming
C. elegans were inferred from particle tracking and particle
image velocimetry [28]. However, these studies, though
insightful, have not succeeded in performing direct measure-
ments of forces and drag coefficients in fluid.

Here we present a method to directly measure the time-
varying propulsive and lateral forces of C. elegans. A com-
parison between our experimentally determined forces and
the calculated forces from RFT demonstrates an excellent
agreement. The experimental and theoretical force curves are
used to deduce values for the drag coefficients of C. elegans
swimming. Finally, a simple scaling argument is presented
which postulates a relationship between the size of the worm
and the mean propulsive and rms lateral force. We find our
experimental data to be well described by the scaling argument.

We use a micropipette deflection technique to measure the
forces generated by the undulatory microswimmer [37–39]. In
this technique, a flexible glass micropipette that is more than
three orders of magnitude thinner than its length deflects when
subjected to an external force. Since the bending stiffness of the
pipette has been determined through calibration, forces can be
computed from deflections of the pipette. We catch worms by
their tail end by applying suction, and hold them with the end of
our pipettes. The micropipettes are capable of deflecting along
the worm’s swimming axis, as well as along the corresponding
in-plane perpendicular direction. Thus, we can measure forces
in two orthogonal directions [Figs. 1(b) and 1(c)] [39]. As the
nematodes move, they generate forces in their propulsive and
lateral directions, which we independently measure using the
micropipette as a force transducer [Fig. 1(c)]. The deflections
of the pipette are much smaller than length scales associated
with the motion of the worms [39].

Upon capture, the worms perform a highly reproducible
and periodic sequence of body movements, in which traveling
waves are propagated down the body, which is akin to free
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FIG. 2. (Color online) (a) Snapshots of a young adult worm at
different stages of one swimming cycle. The labels refer to the
markers in the graphs below and the arrows indicate the main velocity
of the body. The scale bar represents 100 μm. (b) The lateral force
experienced by the worm over one period, where a positive force
denotes a force directed to the left. The peak negative force (red
circle) corresponds to the worm moving directly left, generating a
drag force to the right (negative direction). Secondary peaks (blue
diamond) correspond to turning points in the swimming cycle, when
an extra push in the lateral direction is instigated. This point roughly
coincides with a zero in the propulsive force. (c) The propulsive force
on the worm over one period, where a positive force denotes a force
directed up (in the swimming direction). The maximum propulsive
force (orange square) corresponds to the worm pushing fluid behind
itself, generating a drag force forward. This point roughly coincides
with a maximum in the curvature. (d) The mean curvature of the
worm over one period.

swimming of C. elegans [Fig. 1(b)] [27,28]. However, when
held fixed at one end, the traveling waves are of larger
amplitude than in free swimming and have a node at the fixed
end. The temporal oscillations of the curvature of the worm
exhibit a well defined frequency, which remains constant at
2.4 ± 0.2 Hz for worms of various lengths [Fig. 1(d)]. The
spatial and temporal oscillations in the curvature compare well
with what has been measured for free swimming [27,28,31].

Figure 2 shows direct simultaneous measurements of the
force generated in the lateral and propulsive directions as
well as images of the motion that caused specific forces [39].
Microswimmers inhabit a low Reynolds number environment,
and as such, the net forces involved in swimming are domi-
nated by viscous drag forces. The estimated Reynolds numbers
for the worms in these experiment lie within the range 0.05–0.5
[39]. Thus, we are in a regime where inertial effects may not
be negligible. However, it is known from previous work that
C. elegans swimming in a buffer can indeed be treated as a
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low Reynolds number swimmer, which suggests that viscous
effects may dominate in our system [28]. Using this reasoning,
the peak lateral forces (FL) occur when the worm is moving
with the greatest speed in the lateral direction [Fig. 2(b)].
Conversely, the largest propulsive forces (FP) are generated
when the worms push the greatest amount of fluid behind
themselves [Fig. 2(c)]. Small secondary peaks can be found in
the lateral force curve corresponding to turning points in the
worm’s cycle, in which the lateral motion experiences a small
spike, and there is minimal motion in the propulsive direction.
The maximum propulsive forces approximately coincide with
the points of highest mean worm curvature 〈κ〉 [Fig. 2(d)].

In the low Reynolds number regime, drag forces are simply
linearly proportional to velocities. According to RFT, one can
deconstruct the drag force (dF ) acting on each length segment
(dl) of a slender body into forces in two orthogonal directions,

dFT = −cTvTμdl, dFN = −cNvNμdl, (1)

where μ and v denote the dynamic viscosity and speed respec-
tively, c is the drag coefficient per unit length, and T and N
denote directions tangential and normal to the length segment
[15]. Since a slender body has little variation in thickness, cN

and cT can be approximated as constants over the entire length
of the swimmer. Although an experimental measurement of
these two drag coefficients individually for this microscopic
undulator is still needed, the ratio cN/cT has been determined
through theory and experiment to be approximately 1.5 for
body and swimming parameters characteristic of C. elegans
[10,16,28]. If cN and cT are known, using this prescription,
and given the speed of each segment of the undulator’s body,
it is possible to calculate the total drag force the swimmer
experiences. Since our experiment is performed in conjunction
with high-speed imaging, we can extract the velocities of the
worm body. Using numerical integration, we generate the
RFT prediction for the lateral and propulsive force curves.
Subsequently, using two free parameters, we fit the RFT
prediction of the two force curves to our lateral and propulsive
data (Fig. 3). In our analysis, we fix cN/cT at 1.5 because
our fits are not sensitive enough given the experimental error
in the data to accurately determine this ratio. Thus, the first
free parameter in our fitting controls the magnitude of the
two drag coefficients, and functions as a vertical stretch on
the curves. We find these drag coefficients to vary little for
worms of all sizes ranging from ∼400 to ∼1200 μm (this
agrees with the theoretical prediction of a weak logarithmic
dependence on geometry, in which there is no dependence
if the swimmer is self-similar for all sizes [10,15,18]), and
measure cN = 5.1 ± 0.3, and cT = 3.4 ± 0.2. We have thus
made an experimental quantification of the magnitude of the
drag coefficients for C. elegans swimming in a fluid.

The second fitting parameter allows for a small horizontal
time shift in the data. A phase shift is to be expected for
several reasons, including damping of the force transducer,
inertial effects of the worm, and imaging artifacts such as
overexposure in the body’s direction of travel. The observed
phase shifts were always smaller than T/20, with T the period
of the motion. Deviations between data and theory may be
attributed to various sources of error [39].

Although other studies have generated predictions of the
forces and powers involved in undulatory microswimming at
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FIG. 3. (Color online) (a) The lateral and (b) propulsive force
plotted as a function of time over several periods. The blue circular
markers denote the experimental data which contain a systematic
error of roughly 10% from uncertainty in the spring constant of the
micropipette. The red solid curve represents the prediction from RFT
which has been fit to the data. The error in the RFT curve is estimated
to be 5%.

larger length scales, they are reliant on theoretical models,
including RFT [27,28]. The close agreement between the
predictions of RFT and our experimental data demonstrates
the applicability of this model in generating quantitative
predictions in undulatory systems (Fig. 3). For the purposes
of comparing our measured drag coefficients with theoretical
predictions by Lighthill [10], we can use 1.0 ± 0.2 mm
as an estimated wavelength, and 45 ± 5 μm as the typical
thickness of a young adult. Substituting these parameters
into Lighthill’s expressions, we get cN = 4.9 ± 0.4, and cT =
3.0 ± 0.3, which fall within the error of our experimental
values.

Slender body theory (SBT) is a more general model of
microswimming, on which the simpler RFT is based [40].
SBT is expected to generate accurate predictions over a wider
range of swimming parameters than RFT. However, since RFT
captures our data within experimental error, it follows that it
is in also in agreement with SBT [39].

Using simple scaling arguments, one can determine the
dependence of the magnitudes of typical propulsive and lateral
forces upon the worm size. In our experiments, we find that
the drag coefficients are largely independent of the size of the
worm. Thus, once the forces in Eq. (1) have been integrated
over the worm’s body, the forces will scale as F ∝ vLout,
where v is a typical speed and Lout is the length of the worm
outside of the pipette. The typical speed depends on the product
of the amplitude (A) of the oscillations and the frequency (f ) of
the swimming. Therefore, the forces will scale as F ∝ Af Lout.
We make the approximation that the swimming of the worm is
self-similar for all life stages, which implies that A will scale
linearly with Lout. This assumption is influenced by previous
measurements which showed that mechanical properties of the
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FIG. 4. (Color online) (a) The root-mean-squared lateral force
and (b) the mean propulsive force as a function of the square worm
length outside of the pipette. The mean and rms are taken over
many cycles.

worms can be treated as self-similar [38]. In our experiments,
we find that f does not depend on the worm size. Thus,
we see that the typical viscous forces generated should scale
as F ∝ L2

out. A plot of the root-mean-squared (rms) lateral
force as a function of L2

out yields approximately a straight
line passing through the origin, in accordance with the scaling
argument [Fig. 4(a)]. Since the worms are attempting to swim
forward, one would expect there to be no net force in the lateral

direction over one period. Indeed, for the worms, we measure a
mean lateral force of 0.1 ± 0.7 nN. Consistent with the scaling
argument we find that the mean propulsive force 〈FP〉 also
scales with L2

out at large worm lengths [Fig. 4(b)]. However,
at small worm lengths (�800 μm), the mean force drops. We
attribute this to the fact that small worms undergo motions that
are quite different from traveling waves and more “hooklike.”
This type of motion does not yield appreciable propulsion. The
mean propulsive forces of larger worms we measure here are
comparable to other estimates for C. elegans [28].

Here we report a direct measurement of the forces expe-
rienced by an undulatory microswimmer. Using micropipette
deflection, we attain a high-resolution time sequence of drag
forces felt by C. elegans while swimming in a buffer. By
using these force measurements in conjunction with the low
Reynolds number model resistive force theory, we demonstrate
the success of this simple model in describing the locomotion
of slender microswimmers. This direct verification of the
theory, which has previously been assumed to apply at
this Reynolds number, provides a better understanding of
undulatory microswimming at length scales larger than of
unicellular organisms. Furthermore, using RFT to describe
our data, we extract measured values of drag coefficients for
C. elegans, a highly studied model organism and microswim-
mer. These coefficients are in congruence with theoretical val-
ues, and will allow future studies to perform direct calculations
of the forces generated by free swimmers simply by using high-
speed imaging. Finally, simple scaling arguments successfully
explain how the magnitude of lateral and propulsive forces
scale with the size of the swimmer.
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Biol. 213, 1226 (2010).
[22] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E.

Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011).
[23] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg,

J. Bacteriol. 189, 1756 (2007).
[24] R. P. McCord, J. N. Yukich, and K. K. Bernd, Cell Motil.

Cytoskel. 61, 137 (2005).
[25] S. Chattopadhyay, R. Moldovan, C. Yeung, and X. Wu, Proc.

Natl. Acad. Sci. USA 103, 13712 (2006).
[26] S. Brenner, Genetics 77, 71 (1974).
[27] C. Fang-Yen, M. Wyart, J. Xie, R. Kawai, T. Kodger, S. Chen,

Q. Wen, and A. D. Samuel, Proc. Natl. Acad. Sci. USA 107,
20323 (2010).

[28] J. Sznitman, X. Shen, R. Sznitman, and P. E. Arratia, Phys.
Fluids 22, 121901 (2010).

[29] X. N. Shen and P. E. Arratia, Phys. Rev. Lett. 106, 208101
(2011).

[30] X. N. Shen, J. Sznitman, P. Krajacic, T. Lamitina, and P. E.
Arratia, Biophys. J. 102, 2772 (2012).

050701-4

http://dx.doi.org/10.1016/S0006-3495(04)74253-8
http://dx.doi.org/10.1016/S0006-3495(04)74253-8
http://dx.doi.org/10.1016/S0006-3495(04)74253-8
http://dx.doi.org/10.1016/S0006-3495(04)74253-8
http://dx.doi.org/10.1073/pnas.0505481102
http://dx.doi.org/10.1073/pnas.0505481102
http://dx.doi.org/10.1073/pnas.0505481102
http://dx.doi.org/10.1073/pnas.0505481102
http://dx.doi.org/10.1063/1.1787527
http://dx.doi.org/10.1063/1.1787527
http://dx.doi.org/10.1063/1.1787527
http://dx.doi.org/10.1063/1.1787527
http://dx.doi.org/10.1021/ac0614691
http://dx.doi.org/10.1021/ac0614691
http://dx.doi.org/10.1021/ac0614691
http://dx.doi.org/10.1021/ac0614691
http://dx.doi.org/10.1103/PhysRevLett.96.158101
http://dx.doi.org/10.1103/PhysRevLett.96.158101
http://dx.doi.org/10.1103/PhysRevLett.96.158101
http://dx.doi.org/10.1103/PhysRevLett.96.158101
http://dx.doi.org/10.1002/smll.200700641
http://dx.doi.org/10.1002/smll.200700641
http://dx.doi.org/10.1002/smll.200700641
http://dx.doi.org/10.1002/smll.200700641
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1038/249073a0
http://dx.doi.org/10.1038/249073a0
http://dx.doi.org/10.1038/249073a0
http://dx.doi.org/10.1038/249073a0
http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1002/cm.970050307
http://dx.doi.org/10.1002/cm.970050307
http://dx.doi.org/10.1002/cm.970050307
http://dx.doi.org/10.1002/cm.970050307
http://dx.doi.org/10.1126/science.1172667
http://dx.doi.org/10.1126/science.1172667
http://dx.doi.org/10.1126/science.1172667
http://dx.doi.org/10.1126/science.1172667
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspb.2012.0057
http://dx.doi.org/10.1098/rspb.2012.0057
http://dx.doi.org/10.1098/rspb.2012.0057
http://dx.doi.org/10.1098/rspb.2012.0057
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1088/1367-2630/15/7/075022
http://dx.doi.org/10.1088/1367-2630/15/7/075022
http://dx.doi.org/10.1088/1367-2630/15/7/075022
http://dx.doi.org/10.1088/1367-2630/15/7/075022
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1128/JB.01501-06
http://dx.doi.org/10.1128/JB.01501-06
http://dx.doi.org/10.1128/JB.01501-06
http://dx.doi.org/10.1128/JB.01501-06
http://dx.doi.org/10.1002/cm.20071
http://dx.doi.org/10.1002/cm.20071
http://dx.doi.org/10.1002/cm.20071
http://dx.doi.org/10.1002/cm.20071
http://dx.doi.org/10.1073/pnas.0602043103
http://dx.doi.org/10.1073/pnas.0602043103
http://dx.doi.org/10.1073/pnas.0602043103
http://dx.doi.org/10.1073/pnas.0602043103
http://dx.doi.org/10.1073/pnas.1003016107
http://dx.doi.org/10.1073/pnas.1003016107
http://dx.doi.org/10.1073/pnas.1003016107
http://dx.doi.org/10.1073/pnas.1003016107
http://dx.doi.org/10.1063/1.3529236
http://dx.doi.org/10.1063/1.3529236
http://dx.doi.org/10.1063/1.3529236
http://dx.doi.org/10.1063/1.3529236
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1103/PhysRevLett.106.208101
http://dx.doi.org/10.1016/j.bpj.2012.05.012
http://dx.doi.org/10.1016/j.bpj.2012.05.012
http://dx.doi.org/10.1016/j.bpj.2012.05.012
http://dx.doi.org/10.1016/j.bpj.2012.05.012


RAPID COMMUNICATIONS

DYNAMIC FORCE PATTERNS OF AN UNDULATORY . . . PHYSICAL REVIEW E 89, 050701(R) (2014)

[31] S. Park, H. Hwang, S.-W. Nam, F. Martinez, R. H. Austin, and
W. S. Ryu, PLoS One 3, e2550 (2008).

[32] T. Majmudar, E. E. Keaveny, J. Zhang, and M. J. Shelley, J. R.
Soc. Interface 9, 1809 (2012).

[33] G. Juarez, K. Lu, J. Sznitman, and P. Arratia, Europhys. Lett.
92, 44002 (2010).

[34] S. Jung, Phys. Fluids 22, 031903 (2010).
[35] A. Ghanbari, V. Nock, S. Johari, R. Blaikie, X. Chen, and

W. Wang, J. Micromech. Microeng. 22, 095009 (2012).
[36] J. C. Doll, N. Harjee, N. Klejwa, R. Kwon, S. M. Coulthard,

B. Petzold, M. B. Goodman, and B. L. Pruitt, Lab Chip 9, 1449
(2009).

[37] M.-J. Colbert, A. N. Ragen, C. Fradin, and K. Dalnoki-Veress,
Eur. Phys. J. E 30, 117 (2009).

[38] M. Backholm, W. S. Ryu, and K. Dalnoki-Veress, Proc. Natl.
Acad. Sci. USA 110, 4528 (2013).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.89.050701 for experimental details, movies
of the worm swimming and the forces produced, a calculation
of the Reynolds number, and discussion of sources of error and
slender body theory.

[40] B. Rodenborn, C.-H. Chen, H. L. Swinney, B. Liu,
and H. Zhang, Proc. Natl. Acad. Sci. USA 110, E338
(2013).

050701-5

http://dx.doi.org/10.1371/journal.pone.0002550
http://dx.doi.org/10.1371/journal.pone.0002550
http://dx.doi.org/10.1371/journal.pone.0002550
http://dx.doi.org/10.1371/journal.pone.0002550
http://dx.doi.org/10.1098/rsif.2011.0856
http://dx.doi.org/10.1098/rsif.2011.0856
http://dx.doi.org/10.1098/rsif.2011.0856
http://dx.doi.org/10.1098/rsif.2011.0856
http://dx.doi.org/10.1209/0295-5075/92/44002
http://dx.doi.org/10.1209/0295-5075/92/44002
http://dx.doi.org/10.1209/0295-5075/92/44002
http://dx.doi.org/10.1209/0295-5075/92/44002
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1063/1.3359611
http://dx.doi.org/10.1088/0960-1317/22/9/095009
http://dx.doi.org/10.1088/0960-1317/22/9/095009
http://dx.doi.org/10.1088/0960-1317/22/9/095009
http://dx.doi.org/10.1088/0960-1317/22/9/095009
http://dx.doi.org/10.1039/b818622g
http://dx.doi.org/10.1039/b818622g
http://dx.doi.org/10.1039/b818622g
http://dx.doi.org/10.1039/b818622g
http://dx.doi.org/10.1140/epje/i2009-10514-7
http://dx.doi.org/10.1140/epje/i2009-10514-7
http://dx.doi.org/10.1140/epje/i2009-10514-7
http://dx.doi.org/10.1140/epje/i2009-10514-7
http://dx.doi.org/10.1073/pnas.1219965110
http://dx.doi.org/10.1073/pnas.1219965110
http://dx.doi.org/10.1073/pnas.1219965110
http://dx.doi.org/10.1073/pnas.1219965110
http://link.aps.org/supplemental/10.1103/PhysRevE.89.050701
http://dx.doi.org/10.1073/pnas.1219831110
http://dx.doi.org/10.1073/pnas.1219831110
http://dx.doi.org/10.1073/pnas.1219831110
http://dx.doi.org/10.1073/pnas.1219831110



