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We introduce a minimal theory of glass formation based on the
ideas of molecular crowding and resultant string-like cooperative
rearrangement, and address the effects of free interfaces. In the
bulk case, we obtain a scaling expression for the number of particles
taking part in cooperative strings, and we recover the Adam–Gibbs
description of glassy dynamics. Then, by including thermal dilatation,
the Vogel–Fulcher–Tammann relation is derived. Moreover, the ran-
dom and string-like characters of the cooperative rearrangement allow
us to predict a temperature-dependent expression for the cooperative
length ξ of bulk relaxation. Finally, we explore the influence of sample
boundaries when the system size becomes comparable to ξ. The
theory is in agreement with measurements of the glass-transition
temperature of thin polymer films, and allows quantification of the
temperature-dependent thickness hm of the interfacial mobile layer.
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Glassy materials are ubiquitous in nature (1), and discussions
about the glass transition involve many areas of physics,

from molecular and spin glasses to hard-sphere jamming (2–7).
Despite the intense interest in the dynamical slowing that ac-
companies glass formation, a single microscopic theory has yet to
emerge (8–13). Nevertheless, the phenomenological approach of
free volume (14) and the Doolittle ansatz (15) have been used to
support the Vogel–Fulcher–Tammann (VFT) relation (16–18),
which describes so many of the observed behaviors. Fundamental
to glass formation are the suggestions that particles are increas-
ingly crowded, and relaxation requires the cooperative partic-
ipation of a growing number of particles. The hypothesis of a
cooperatively rearranging region, as introduced by Adam and
Gibbs (19), is appealing and has been observed in computa-
tional studies (20, 21).
The existence of a length scale ξ for cooperative rearrangement

(22) has led to tremendous interest in confined glass formers, as
initiated by ref. 23. Perhaps, the most active example of attempts
to probe ξ is the study of glassy polymer films (24–26), where
fascinating observations have been made. For the most studied
case of polystyrene, reductions in the measured glass-transition
temperature have been almost uniformly reported as the film
thickness is reduced, both experimentally (27) and numerically
(28). It has been further suggested that this apparent anomaly is
linked to the observed existence of a more mobile interfacial layer
(29–32). As a consequence, there have been many theoretical
attempts to understand the thin-film glass transition, with varying
degrees of complexity and success (33–38).
In this article, we present a simple analytical model for relax-

ation in glass-forming materials. First, from a microscopic
molecular picture, the nature of the cooperative mechanism is
explicitly defined and characterized as a function of density, and
the Adam–Gibbs phenomenology is recovered. Then, by including
thermal expansivity, we derive the VFT relation for the temper-
ature dependence of the relaxation time in bulk materials. Finally,
to address the effects of interfaces, the theory is applied to the
case of thin films.
Beyond any formulation, there are two main ingredients that a

microscopic cooperative theory must contain: (i) “more cooperative
is easier,” and (ii) “more cooperative is rarer.” The first one

means that to redistribute a given amount of volume in a
crowded environment, a cooperative rearrangement is energeti-
cally more favorable than a solitary one––because the former is
the sum of N small displacements, which is easier to satisfy than a
single large displacement. This effect tends to maximize N. The
second ingredient relies on the fact that glass-forming materials
are made of independent particles that move incoherently due to
thermal fluctuations. Therefore, it is relatively rare to have
motions that are coherent in time and space and form collective
objects: the larger N, the rarer the event. This effect tends to
minimize N. Taken together, these two ingredients suggest a most
probable value of N. Changing the temperature may change the
crowding constraints and/or the coherence penalty, which results
in the temperature dependence of this most probable value and
thus the glassy behavior of interest. From numerical simulations
(20, 21, 39) comes another important feature: it has been observed
that the cooperative regions often have a fractal dimension close
to 1. This was also reported in experimental studies of repulsive
colloids (40). Therefore, we add a third ingredient to the list
above: (iii) “cooperative rearrangement is string-like.” In the fol-
lowing, our goal is to build the simplest mean-field toy model that
contains i, ii, and iii.
As shown in Fig. 1, we consider an assembly of particles of

effective radius r, average intermolecular distance λ, and volume
fraction ϕ∝ ðr=λÞ3. A given particle is surrounded by a cage of
nearest neighbors. Relaxation requires passage between two
adjacent neighbors, the “gate,” with average size L∼ λ− 2r. We
define λ= λV, with λV ∼ 2r, as the point of kinetic arrest with
volume fraction ϕV. Because we are only considering a single
type of motion, and because the pressure is finite, the value of ϕV
will be less than the jamming volume fraction ϕJ (10). As density
increases, before complete kinetic arrest, there exists an onset
value ϕc <ϕV of the volume fraction, and associated λc > λV of
the interparticle distance, at which cooperative rearrangement
becomes the only possible relaxation mechanism. It is important to
qualify that for a cooperative motion to actually be a cooperative
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rearrangement, at least two particles have to exchange their
positions. Note also that the value of λc can be very close to λV in
actual physical systems, for several reasons such as deformability
(41) and anisotropy (42) of the molecules.
As a reference, we consider the liquid-like case of a particle

escaping from its cage by solitary motion (Fig. 1A). On average,
such motion is allowed if λ> λc, by definition of λc. When λJ λc,
the probability density of relaxation per unit time and per unit
volume is thus Pc ∼ 1=ðτcλ3Þ, where the constant τc is a typical
liquid-like relaxation time at the cooperative onset. At the cur-
rent level of minimal description, the Boltzmann factor associ-
ated with the sharp repulsive intermolecular potential of the gate
has been replaced by an implicit Heaviside function on λ− λc.
When λ< λc, solitary escape cannot occur because the gate is

too small by an average length δ∼ λc − λ. Relaxation is only
possible through a cooperative process involving N − 1 neighbors
of the test particle that get into close proximity with each other.
Thereby, the missing space δ can be locally and temporarily
made available, thus allowing for a rearrangement, as observed
in bidisperse hard disks (43). Inspired by computational studies
(20, 21, 39) and experiments (40), we consider cooperative re-
gions in the form of string-like random chains (Fig. 1B). Because
the gate between particles has an average length L, the addi-
tional length created by the cooperative move is Δ∼ ðN − 1ÞL.
The escape of the test particle through a collective motion is thus
possible if Δ> δ. The threshold corresponds to N =N*, where:

N*ðϕÞ∼ λc − λV
λ− λV

∼

�
ϕV

ϕc

�1=3

− 1
�
ϕV

ϕ

�1=3

− 1

. [1]

This central quantity, which we will refer to as the bulk coop-
erativity, is plotted in Fig. 2. Note that Eq. 1 could have been
assumed, independently of any details on the string-like micro-
scopic picture, because it is the simplest expression having the
expected properties: it equals 1 at the cooperative onset ϕc and
it diverges at the kinetic arrest point ϕV. The so-called bulk glass-
transition point ϕbulk

g lies somewhere in between ϕc and ϕV, and
depends on the time scale of the observations. Naturally, such a
collective scenario requires all of the individual motions making
up the cooperative string to be in phase. This coherence is unlikely

to be spontaneously satisfied with random isotropic molecular
fluctuations, resulting in a penalty. The latter can be translated
into the probability factor ∼ eN−1ð1− eÞ, for the independent mo-
tions of the N − 1 consecutive particles of the cooperative string to
occur coherently with the motion of the first test particle. Here, « is
the elementary coherence probability to be determined below, and
the termination factor 1− e expresses the incoherence of the
N + 1th particle (Fig. 1B). Finally, the two features above can be
combined to express the probability density of a cooperative re-
laxation process involving N particles:

PNðϕÞ∼
1

τcλ
3 ð1− eÞeN−1Θ

�
N −N*

�
, [2]

where, as in the previous liquid-like case, the Boltzmann factor
associated with the sharp repulsive intermolecular potential has
been replaced by a Heaviside function Θ. Note that PNðϕÞ is
maximal for N =N* at fixed ϕ.
Summing the PN over all N ≥N*, one obtains the total prob-

ability density of relaxation:

PðϕÞ∼Pce
Np−1. [3]

The relaxation is entirely determined by the cooperativity Np,
and is exponentially decaying with increasing Np, as reported
in jamming studies of air-driven granular beads (44). Introducing
the ergodic correspondence between the bulk relaxation time τ
and Eq. 3, through τPλ3 ∼ 1, and defining the molecular time
scale τ0 ≡ eτc, one obtains:

τ

τ0
∼
�
τc
τ0

�Np

. [4]

This equation expresses the fact that the cooperative relaxation is
a combination of Np independent motions that are all similar to a
solitary escape at the cooperative onset. Note that in a thermal
description, one would estimate the onset relaxation time through
the Arrhenius law: τc ∼ τ0eΔμ=kBTc, where Δμ is the gate energy
barrier and kBTc is the thermal energy at the cooperative onset.
We thus obtain the Adam–Gibbs phenomenology (19).
Having described the effect of crowding on the string-like

cooperativity, we now study the glass transition of bulk systems. In

A B

Fig. 1. Two relaxation modes in glass-forming materials. (A) At low volume
fraction ϕ, or high temperature T, a test particle (green) can escape its
neighboring cage by single particle motion. (B) At higher volume fraction, or
lower temperature, the previous mechanism is inhibited, but relaxation of
the test particle can still occur through a random string-like cooperative
process: neighbors (blue) that temporarily get into close proximity with each
other provide additional space for the relaxation. At the end of the string,
an incoherent particle (gray) terminates the process.

Fig. 2. Bulk cooperativity as a function of normalized inverse volume fraction
(Eq. 1). We fixed ϕV=ϕc and ϕV=ϕ

bulk
g to realistic values for polystyrene, using

α ≡ − ð1=ϕÞdϕ=dT = 5.5  × 10−4 K−1 (45), Tbulk
g = 371 K (64), Tc = 463 K (22,

47), and TV ≈ 322 K (Fig. 4).
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particular, we characterize the relaxation time as a function of
temperature T, by coupling the previous density-based picture to
the thermal expansion coefficient α≡ − ð1=ϕÞdϕ=dT of the equi-
librium melt state. We assume that the material dilatation is small
in the considered range, which goes from cooperative onset (ϕc, Tc)
to kinetic arrest (ϕV, TV). This is valid for several glass formers
such as polystyrene, for which α= 5.5× 10−4  K−1 (45), TV = 327 K
(46), and Tc = 463 K (22, 47), so that ϕðTÞ ’ ϕV½1+ αðTV −TÞ�.
Combining the latter with Eqs. 1 and 4, one directly derives the
VFT relation (16–18), or equivalently the Williams–Landel–Ferry
(WLF) relation (48), respectively:

τðTÞ∼ τ0 exp
�

A
T −TV

�
∼ τc exp

�
AðTc −TÞ

ðT −TVÞðTc −TVÞ

�
, [5]

where TV is identified as the Vogel temperature (16) and where
A≡ ðTV −TcÞlnðeÞ is a reference temperature (see ref. 49 for a
thermodynamic derivation of the VFT relation based on chain-
like excitations). Therefore, the elementary coherence probabil-
ity e≡ τ0=τc ≡ τ0=τðTcÞ is the normalized relaxation rate at the
cooperative onset. The bulk glass-transition temperature Tbulk

g is
defined as the one at which τ reaches a given large experimental
time scale τbulkg ≡ τðTbulk

g Þ.
Because our model leads to the VFT and WLF time–temper-

ature superpositions, it captures well the so-called fragile-glass
phenomenology (50), and links thermal expansion and fragility as
observed in metallic glasses (51). Strong-glass phenomenology can
be recovered as well when TV � Tbulk

g . This is reminiscent of soft
colloidal glasses (41), for which the kinetic arrest point is shifted to
higher volume fractions due to particle deformability. Note that
additional molecular processes, beyond the scope of this work,
may lead to bulk relaxation that does not diverge at TV (52, 53).
Besides, as the system approaches TV, the fractal dimension of the
cooperative regions may change (21). Finally, our cooperative-
string model is a free-volume approach and, as such, is subject to
the same criticism as all free-volume models (54, 55).
The bulk relaxation process presented above consists of ran-

dom cooperative strings and is entirely determined by Np.
Therefore, in the vicinity of the kinetic arrest point, the length
scale ξ of the cooperative regions reads ξ∼ λN*ν, where ν= 1=2
for a simple random walk, ν≈ 0.588 for a self-avoiding walk, and
ν= 1=3 for a 3D compact shape. Consistent with our minimal
string-like model, we consider the simple random walk. Invoking
Eq. 1 and thermal expansivity, one obtains:

ξðTÞ∼ λV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc −TV

T −TV

s
. [6]

At the cooperative onset, this asymptotic expression of the coop-
erative length corresponds to the effective particle size λV ∼ 2r. At
the Vogel temperature, ξ diverges with exponent −1=2. Note that
this power law is similar to the one measured in 2D vibrated gran-
ular media around jamming (56). The exponent also compares well
to the values of −0.59 from kinetically constrained lattice-gas sim-
ulations (57), and −0.62 from numerical studies of Lennard-Jones
liquids (58). Unfortunately, the direct measurement of ξðTÞ below
Tbulk
g is challenging for 3D thermal glasses. A natural alternative way

is thus to reduce the sample size toward ξ (23, 24, 26).
We now turn to the case of a thin film of thickness h, sup-

ported on an inert substrate. Our model predicts that the key
effect of the free interface is to favor a higher surface mobility, as
observed in experiments (27, 29–32). Indeed, the cooperative
strings can now be truncated by the cage-free boundary (Fig. 3),
leading to a lower surface cooperativity. Therefore, we introduce
the average local cooperativity Np

s ðz,TÞ, at a distance z from the
free interface. The natural length scale of the problem is the bulk
cooperative length ξ. When z � ξ, the free interface is typically

not reached with less than Np cooperative particles, and the re-
laxation is bulk-like with Np

s ∼N*. As z→ 0, Np
s vanishes due to

the absence of caging at the boundary. In between, Np
s takes all

of the intermediate values. Thus, Np
s varies along z over the bulk

cooperative length ξ, and is expected to have the following as-
ymptotic self-similar form in the vicinity of TV:

N*
s ðz,TÞ∼N*f

�
z
ξ

�
, [7]

where f is a continuous and monotonic function satisfying
f ð0Þ∼ 0, and f ðu � 1Þ∼ 1.
Because our description of the cooperative process involves

random strings of particles, Eq. 7 can be supported at large Np by
the following argument based on Brownian motion. For a given
cooperative string, we define n0 ≤∞ as the number of particles at
which the string hits the free interface for the first time. If
n0 ≥N*, the behavior is bulk-like; if n0 <N*, the string is trun-
cated by the interface. Therefore, the quantity of interest is the
density probability g of first passage at the interface with n0 co-
operative particles. Defining the first-passage “time” t0 = n0=Np,
and starting at “distance” Z= z=ξ from the interface, one gets
the 1D expression: gðt0,ZÞ= ð2πÞ−1=2t−3=20 Z exp½−Z2=ð2t0Þ� (59).
The local cooperativity being the minimum between n0 and Np, the
average local cooperativity is defined as Np

s =N*hminð1, t0Þit0 =
N*½1−

R 1
0 dt0ð1− t0Þgðt0,ZÞ�, where we explicitly see the in-

terfacial lowering of the bulk cooperativity. Calculating the in-
tegral, we recover Eq. 7 with f ðu

ffiffiffi
2

p
Þ= erfðuÞ+ 2u expð−u2Þ=ffiffiffi

π
p

− 2u2erfcðuÞ. Note that the exact functional form chosen for f
is not crucial when comparing to the experimental data below, as
other sufficiently sharp functions provide similar results.
Following the derivation of Eq. 4 and assuming that one can

replace Np by the local average cooperativity Np
s of Eq. 7, one

obtains the local relaxation time:

τsðz,TÞ
τ0

∼
�
τ

τ0

�f ðz=ξÞ
. [8]

We thus see that f acts as a local exponent, ranging from 0 to 1,
on the normalized bulk relaxation time. This formula generalizes
the Adam–Gibbs phenomenology (19) by accounting for the ef-
fect of a free interface.
Finally, we compare our theory to dilatometric measurements

of reduced glass-transition temperatures in thin polystyrene films
supported on silicon substrates. In the experiments, the thickness-
dependent glass-transition temperature T gðhÞ is defined as the
location of a kink in the dilatation plot obtained by ellipsometry
(24). This change of expansivity occurs when the system is half-
glassy and half-liquid. Given that f is monotonic, this translates to
the apparent transition occurring when, at the middle z= h=2 of

Fig. 3. Two string-like cooperative paths in a thin film of thickness h. For an
inert supporting substrate (thick line), relaxation of a test particle (green) at
a distance z from a free interface (dashed line) can occur through either a
bulk cooperative string (blue) of size ξ (Eq. 6), or a truncated string (red)
touching the interface.
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the film, the local relaxation time τs equals the bulk relaxation
time at the bulk glass transition τbulkg (60). Invoking Eqs. 5 and 8,
T gðhÞ thus satisfies:

2ξ
�
T g
�
f−1
 

T g −TV

Tbulk
g −TV

!
= h, [9]

where f−1 denotes the inverse of the bijective function f. The so-
lution of this equation is plotted in Fig. 4, and compared with
measurements on polystyrene (61, 62). The literature data encom-
pass a wide variety of techniques and protocols (61), and for pur-
poses of fitting we consider the restricted data of ref. 62, where the
annealing conditions and atmosphere have been carefully con-
trolled and documented. We see from Fig. 4 that our model pro-
vides excellent agreement with the experiments. The two adjustable
parameters are the critical interparticle distance λV ≈ 3.7 nm, which
is reasonably found to be comparable to the persistence length of
polystyrene (63, 64), and the Vogel temperature TV ≈ 322 K, which
is close to the reported value of 327 K (46). Note that we have only
considered polystyrene, as that material is extremely well studied.
However, by varying the single parameter λV in Eqs. 6 and 9, one
would obtain larger, smaller, or even immeasurable reductions in
T g, as could be observed in other materials.
As one notices in Fig. 4, and because ξ does not vary much

around Tbulk
g according to Eq. 6, the cross-over thickness at which

the measured glass-transition temperature first shows deviations
from the bulk value is a few ξðTbulk

g Þ. Interestingly, this statement
is equivalent to a purely finite-size criterion (65), even though it
is obtained from an explicit truncation of cooperative strings at
the free interface. We may thus understand why there has been
so much debate in the past between the purely finite-size effect
and the mobile-layer hypothesis (66).
Because the comparison between theory and experiments (Fig.

4) provides an estimate of the critical interparticle distance λV,
we can now compute the cooperative length ξðTÞ for polystyrene
above and below Tbulk

g . In Fig. 5, ξ increases with reducing
temperature and diverges at TV, as more and more molecules
are required to move cooperatively for relaxation to occur. As
discussed below, our model also predicts the existence of a liquid-

like mobile layer at the free interface of a thin glassy film, such as
that observed in refs. 27, 29–32. This introduces another relevant
length scale to the problem: the mobile-layer thickness hmðTÞ. An
important matter of debate has been to determine the relation
between ξ and hm, if any (67). In other words, is a thin-film ex-
periment able to probe the bulk cooperative length scale ξ, or does
it introduce another independent length scale through the mobile-
layer thickness hm? An advantage of the present microscopic
picture is to provide a tentative answer to this question. At a given
temperature T <Tbulk

g , there exists a position z= hm where the
local relaxation time τs equals the bulk relaxation time at the bulk
glass transition τbulkg . Invoking Eqs. 5 and 8, this implies:

hmðTÞ= ξðTÞ f−1
 

T −TV

Tbulk
g −TV

!
. [10]

For z> hm, τs is larger than τbulkg and the system is glassy; for
z< hm, τs is lower than τbulkg and the system is liquid-like. There-
fore, hm is identified as the liquid-like mobile-layer thickness. As
seen in Eq. 10 and Fig. 5, hmðTÞ is different but related to ξðTÞ.
Both lengths originate from the same cooperative-string model,
but ξ is a bulk quantity whereas hm reflects the truncation of the
strings at the free interface. As a result, hm increases with in-
creasing temperature and diverges at the bulk glass-transition
temperature, when the entire material is in the liquid state, as
observed in recent experiments (31).
To conclude, we have developed a cooperative-string model

that connects in a predictive manner essential ingredients of the
glass transition, in bulk systems and near interfaces. The theory
is based only on the idea of cooperativity required by increasing
molecular crowding, and introduces a string-like cooperative
mechanism that is motivated by recent studies. An outcome of
our idealized microscopic description is to recover the Adam–

Gibbs picture, as well as the VFT relation, without the need for
the Doolittle ansatz to link free volume and relaxation. In
particular, we derive explicit scaling expressions for the coop-
erativity and associated relaxation probability. Furthermore, the
simplicity of the model enables application to reported anomalies in
the glass transition of thin polymer films. Specifically, the free in-
terface truncates the cooperative strings and thus enhances the
mobility in its vicinity. Agreement between the present theory and
reported dilatometric measurements of the glass-transition tem-
perature of supported polystyrene films is excellent. The two

Fig. 4. Comparison between dilatometric experimental data (filled symbols) for
the reduced glass-transition temperature T gðhÞ of thin polystyrene films sup-
ported on silicon substrates (62), and the theory (line) given by Eq. 9. Other lit-
erature data (61) are shown (open symbols) for completeness. The fixed
parameters are the bulk glass-transition temperature Tbulk

g = 371K (64), and the
onset temperature Tc = 463K (22, 47). The two adjustable parameters are the
critical interparticle distance λV ≈ 3.7 nm and the Vogel temperature TV ≈ 322 K.

Fig. 5. Bulk cooperative length ξ (dotted, Eq. 6) and surface mobile-layer
thickness hm (plain, Eq. 10) of polystyrene, as a function of temperature. We
used Tbulk

g = 371K (64), Tc =463K (22, 47), and the values λV ≈ 3.7 nm and
TV ≈322 K obtained from the fit in Fig. 4.
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adjustable parameters are the critical interparticle distance at ki-
netic arrest, which is found to be similar to the persistence length of
polystyrene; and the Vogel temperature, which is found to be close
to literature values. Finally, the model provides a way to distinguish
between purely finite-size and surface effects, and to clarify the
existing link between cooperative length and mobile-layer thick-
ness. Importantly, the success of the theory applied to the thin-film
data suggests that thin-film experiments are indeed relevant probes
of the length scale of bulk cooperative dynamics that may exist
independently of any structural length scale in the material. This

approach may be refined with additional cooperative processes,
and could be adapted to the cases of attractive substrates, free-
standing films, or other geometric confinements, whose effects on
the measured glass-transition temperature may be crucial.
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