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We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores
smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were
purposefully prepared in liquid polymer films, and their evolution in time was monitored using optical and
atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness
for a homopolymer film. The results agree with a simple model which takes into account the energy cost
due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied
by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes
increased frustration at the pore edge resulting in an enhanced cost of pore formation.
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Nucleation and growth occurs in a variety of physical
systems where there is a phase transition. Crystallization of
ice, the formation of micelles in solution, and the growth of
diamonds from vitreous carbon are all systems where a
nucleus can form and then either grow or shrink depending
on its size [1]. In crystallization, for example, there is a
trade-off between the volumetric free energy contribution
which favors the crystalline phase, and the surface area
dependent cost of the interfacial tension between the two
phases which favors a single liquid phase [2]. By examin-
ing the free energy cost of creating a nucleated phase with
radius r, the critical radius rc can be derived from classical
nucleation theory. For a nucleus with r < rc, the nucleated
phase is unstable to fluctuations, while for r > rc the
nucleated phase is energetically favorable and the nucleus
can grow. The same physics governs diverse phenomena
including bubble nucleation of false vacuum states in
inflationary cosmology [3], as well as many biologically
important processes such as amyloid-beta protein aggre-
gation [4,5], microtubule growth [6], and pore formation in
cell membranes [7]. Membrane pores can be created by
pathogenic bacteria to invade target cells [8], and play an
important role in many biological processes such as
mechanical force transduction [9] and water permeability
of biological membranes [10]. In this Letter we focus on
pore formation in a membrane.
For the nucleation of a pore in a membrane, there is a

balance between two competing effects. First, there is an
energy cost of having an interface between the membrane
and its surrounding phase. Because the presence of a pore
removes interface, this reduces the interfacial energy cost.
Opposing this effect is the energetic cost of creating an
edge around the perimeter of the pore. The stability and
growth of pores depend on the relative contribution of
interface reduction compared to the edge cost. The free

energy cost of creating a pore in a membrane which has two
surfaces with interfacial tension γ is given by [11]

ΔGðrÞ ¼ 2πrΓ − 2πr2γ; ð1Þ

where Γ is the edge tension (or line tension) of the pore:
the free energy cost per unit length of creating interface at
the edge of the pore [see schematic in Fig. 1(a)]. The edge
tension in lipid membranes has been the subject of both
experimental [12–20] and theoretical [21–27] studies,
which address important questions about the composition
profile of the lipid molecules around the pore edge [22,26]
as well as the role of peptides in the free energy of the pore

FIG. 1. (a) Cross-sectional diagram of a pore with radius r
in a membrane with thickness h, interfacial tension γ, and edge
tension Γ. (b) Schematic of a freestanding polymer membrane
(light grey rectangle) supported by a stainless steel grid. Each
hexagon in the grid is ∼1 mm across. (c) Optical microscopy
image of a small portion of a membrane showing 29 pores with
varying radius.
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[18–20]. Studying pore formation in lipid membranes can
be an experimental challenge due to their small size and fast
time scales.
Here we study the formation of pores in a model

membrane system, a thin freely suspended polymer film.
We use membranes which are hundreds of nanometers
thick, allowing for direct measurement using optical or
atomic force microscopy. Furthermore, because the vis-
cosity of a polymer film depends strongly on temperature,
the dynamics of pore formation can be tuned to convenient
time scales. Previously, viscous polymer membranes have
been used as a model system to study the growth dynamics
of rupture in bubbles [28] as well as to study the sponta-
neous nucleation and growth of holes [29–31]. Our
approach is to purposefully make holes of various sizes
in a liquid polymer membrane and allow them to evolve
under the influence of surface tension. Holes with a radius
below a critical radius are dominated by the edge tension
and shrink, while those larger than the critical radius grow.
Examining the shrinking or growth of many holes allows
for the determination of rc which depends on the film
thickness h. Thus, we are able to watch the growth and
shrinkage of pores, which gives a direct measurement of the
critical pore size. Unlike previous studies which rely on
indirect inference from fluid flow through the membrane
and changing the mechanical tension of the membrane
[12,13], our measurements provide a straightforward
approach to probing the physics of equation (1)—a
standard textbook equation—for which direct measurement
has been elusive.
To create the polymer membranes, polystyrene (obtained

from Scientific Polymer Products, USA, with number
averaged molecular weight Mn ¼ 47.5 kg=mol, and poly-
dispersity index 1.01) was spincast from dilute toluene
solution onto freshly cleaved mica (Ted Pella, USA). The
polystyrene (PS) films were then floated off the mica onto a
deionized water bath (18.2 MΩ cm, Pall, USA), and trans-
ferred onto silicon (University Wafer, USA). Pores in the
polystyrene film were created by a focused laser spike
annealing setup [32–34], where a tightly focused laser
(Coherent, Verdi V2, 532 nm) was used to locally heat the
silicon wafer supporting the PS film. This heating had two
effects. First, the local temperature of the PS film became
greater than its glass transition temperature (Tg ≈ 100 °C),
which created a local region of liquid PS. Second, the laser
caused a lateral temperature gradient within the PS film
with a corresponding surface tension gradient. The surface
tension of PS decreases with increasing temperature, thus
thermocapillary flow drives the formation of a hole in the
PS film around the center of the laser beam. By varying the
power and exposure time of the laser, holes of various sizes
in the PS film could be created. The process of exposing the
film to the laser, closing the laser shutter and then trans-
lating the sample to a new location was repeated to yield
hundreds of holes in each PS film. Having hundreds of

holes ensured a good statistical average for the critical
radius measurement. After preparing the holes, the films
were floated off the silicon back onto the water bath, and
picked up onto stainless steel grids shown schematically in
Fig. 1(b). The grid supports the PS film, with many freely
suspended regions of PS film. The films were then heated
above Tg (T ≳ 110 °C) on a heating stage (Linkham, UK)
to bring them into the liquid state. The size of the pores was
measured in situ using optical microscopy (OM) (Olympus,
USA) as shown in Fig. 1(c), or by intermittently quenching
the samples to room temperature, deep into the glassy
state of PS where no flow occurs, and scanning the film
with atomic force microscopy (AFM) (Veeco Cailber,
USA) [35].
The AFM profiles of three pores in a film with thickness

h ¼ 810 nm are shown in Fig. 2 for three different
annealing times t at temperatures above Tg. The largest
hole grew (left column). Remarkably, the the next largest
was stable over the time scale of the experiment (middle
column), and the smallest hole shrank (right column). The
size of the stable pore gives an estimate of rc ≈ 500 nm for
h ¼ 810 nm. In order to perform measurements on hun-
dreds of pores in the same film, OM was used to measure
the pore radius. Figure 3 shows the time evolution of the
radius of three different holes for a film h ≈ 900 nm thick.
The largest pore grows exponentially with time, consistent
with previous studies [29,30,36]. The intermediate sized
pore does not change, while the smallest hole rapidly
shrinks. Repeating this measurement on a sample with
hundreds of holes, we find only 8 stable holes for the film
with h ≈ 900 nm. From the size of the stable holes, we find

FIG. 2. The time evolution of pores in a viscous polystyrene
membrane (h ¼ 810 nm) as measured by AFM. The largest
hole grows (left column), while the smallest hole closes (right
column). An intermediate hole (middle column) is stable in size
over the measurement.
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rc ¼ 730� 100 nm for h ¼ 965 nm. The results for 9
different PS film thicknesses show rc depends linearly
on h (Fig. 4).
To understand the linear relation between rc and h, we

need to consider the edge tension term in Eq. (1). Since the
PS films are composed of a single polymeric species and
the film thickness is much larger than typical molecular
dimensions, the energy cost of creating the rim of the pore
is just the bulk surface tension cost. If we consider the edge
of the pore to be a torus as has been done in previous
theoretical work [27,37,38], with a diameter h [see
schematic in Fig. 1(a)], then the surface area of the rim
is given by the surface area of the inner half of a torus
A ¼ π2hr − πh2 [39]. The free energy of the PS pore is
then

ΔGðrÞ
γh2

¼ −π þ π2
�
r
h

�
− 2π

�
r
h

�
2

; ð2Þ

where we identify the edge tension as

Γhomopolymer ¼ γh
�
π

2
−

h
2r

�
: ð3Þ

The solid black line in Fig. 5 shows the free energy cost of a
pore as given by Eq. (2). The single maximum of the free
energy is an energy barrier to the growth of a pore. This
prevents smaller pores from growing, and ultimately leads
to their closure. Pores which are left of the peak in the free
energy shrink, while those to the right of the peak grow.
The critical radius is given by the maximum in the free
energy, which we find by setting ∂rΔGjr¼rc ¼ 0,

rc ¼ πh=4: ð4Þ

The simple theoretical expression for the critical radius,
Eq. (4), is shown in Fig. 4 (solid line) and agrees with the
experimentally measured values with no fitting parameters.
Since h > 200 nm for all measured films, the contribution
from disjoining pressure is negligible [40]. The excellent
agreement between theory and experiment confirms the
assumed geometry of the pore and the assumption that
surface tension is the only free energy contribution in
creating a pore in PS homopolymer films. The PS films are
idealized model membranes with only the total surface area
contributing to the free energy.
Now that we have a well-characterized model mem-

brane, we turn to incorporating one complicating aspect
associated with biological membranes. The stability of
pores in membranes is largely determined by the effects of
edge tension. For example, peptide binding can alter the
edge tension which stabilizes pores [19]. In contrast, here
we explore the effect of altering the edge tension in a
simplified manner. Instead of using a homopolymer, we use
a diblock copolymer for the polymer membrane. A diblock
copolymer is a type of polymer in which each molecule
contains two distinct chemical blocks [2]. Because of an
enthalpic repulsion of the two parts of each chain, phase
separation is favorable at sufficiently low temperatures. But
because the two chemical species are covalently bonded
together, phase separation can only occur on the length
scale of the individual molecules (typically 10–100 nm).
Here we use a symmetric polystyrene-poly(methyl meth-
acrylate) (PS-b-PMMA) diblock copolymer (with Mn ¼
25 kg=mol for the PS block and Mn ¼ 26kg=mol for the
PMMA block, obtained from Polymer Source, Canada),
and follow the same sample preparation and experimental
procedure used for the homopolymer. A symmetric diblock
copolymer will phase separate into lamellar layers with
equilibrium thickness L, similar to a lipid bilayer. In fact,

FIG. 3. The radius of three different sized pores in a film
h ≈ 900 nm thick. The pore which started off with the largest
radius (triangles) grew over time, while the smallest hole (circles)
shrank and closed. The intermediate sized pore (squares) was
stable in size during the measurement. The solid line is a fit of
r ¼ r0et=τ to the growing hole, with r0 ¼ 1.3 μm and τ ¼ 910 s.
The inset shows the same data over a smaller range of time to
highlight the dynamics of the shrinking pore.

FIG. 4. Film thickness dependence of the critical radius for a
PS homopolymer (squares) and a PS-PMMA diblock copolymer
with additional edge tension (triangles). The solid line is the
theoretical prediction of Eq. (4) with no fitting parameters. The
dashed line is a fit of Eq. (7) to the diblock copolymer data. For
the thinnest homopolymer film used, all the measured pores grew,
providing an upper bound for the critical radius at this film
thickness, denoted by the downward arrow.
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diblock copolymers have been used to model lipid bilayer
membranes in previous theoretical work [27]. When con-
fined to a thin film, there is an extra free energy cost of a
curved diblock surface [41]. Unlike the case of a homo-
polymer membrane where the free energy cost at the edge
of the pore is just due to the bulk surface tension of the
fluid, a diblock copolymer has an added energy cost of
rearranging molecules near the curved edge of the pore
which disrupts the flat lamellar geometry. We assume that
this cost is inversely related to the radius of curvature. Here,
the radius of curvature is h=2, and to first order this adds an
additional cost to the edge tension of a hole given by Eq. (3)
in terms of the nondimensional curvature L=h as

Γdiblock ¼ Γhomopolymer þ ϕ
L
h
; ð5Þ

where ϕ is an energy cost per unit length associated with
the curvature. Combining Eq. (5) and Eq. (1) gives

ΔGðrÞ
γh2

¼ −π þ
�
π2 þ 2πϕL

γh2

��
r
h

�
− 2π

�
r
h

�
2

: ð6Þ

The free energy cost of a pore in a system with an added
edge tension contribution is shown in Fig. 5. The free
energy given by Eq. (6) is plotted for successively larger
values of the edge tension. The larger edge tension results
in an increased free energy barrier to hole growth, which
shifts rc to progressively higher values. To obtain the
critical radius for the diblock copolymer case, we once
again set ∂rΔGjr¼rc ¼ 0, and obtain the critical radius

rc ¼ πh=4þ ϕL
2γh

: ð7Þ

To test Eq. (7), diblock copolymer membranes with pores
were created in the same way as the PS homopolymer case,
and the critical radius was measured for varying film

thicknesses (triangles in Fig. 4). For thick films
(> 800 nm), the critical radius measured in the diblock
films show no significant difference from that of the
homopolymer films. In thinner films, the effect of the
additional edge tension of the diblock copolymer film
becomes important, and the critical radius begins to
increase as the film thickness is decreased. The dashed
line is the fit of Eq. (7) to the diblock data with
ϕL=γ ¼ 0.09� 0.04 μm2. This ratio defines a character-
istic lengthscale h⋆ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ϕL=γ
p ¼ 300� 70 nm. The con-

tribution to the edge tension from the structure of the
diblock copolymer becomes dominant when the second
term in Eq. (7) is larger than the first term, which occurs
when h≲ h⋆. The observed deviation of the diblock
copolymer from the homopolymer case in Fig. 4 is
consistent with the molecular structure being significant
for films thinner than h⋆.
Polymer membranes have provided a convenient system

to examine a nucleated process. The ability to use direct
optical measurements allows for a conceptually straightfor-
ward demonstration of nucleation and growth, which are
important in many other physical processes. The simplicity
of the system allows for an uncomplicated mathematical
description of the physics involved. The ability to tune the
pore stability by changing molecular architecture gives a
clear understanding of the competing contributions to the
free energy of the system.
In conclusion, we have studied the stability of pores in a

model membrane. We find that for a simple polystyrene
film, the critical radius depends linearly on film thickness.
A model which only accounts for the surface tension
contribution to the free energy and takes into consideration
the surface area at the edge of the pore describes our
experimental results with no free parameters. On the other
hand, we find that for a membrane made of a diblock
copolymer the critical radius does not match the simple
model for thin films. The ordered microstructure of the
diblock causes deviations from the bulk free energy cost
due to surface tension. This added contribution to the edge
tension can be accommodated with an additional term in
the free energy which becomes important for thin films and
is able to describe the experimental diblock copolymer
critical radius with one fitting parameter. The study of pores
in polymer membranes provides a model system for
nucleation and growth where the critical radius can be
derived from simple mathematical arguments. In this model
membrane system the effect of the edge tension, which is
important to biological processes, can be altered simply by
changing the molecular architecture of the polymer used in
the membrane.

Financial support for this work was provided in part by
NSERC (Canada). The authors would like to thank
Professors John Dutcher and An-Chang Shi for valu-
able input.

FIG. 5. The normalized free energy cost of creating a pore with
radius r in a viscous membrane of film thickness h and surface
tension γ. The solid black curve is given by Eq. (1), and the value
of rc (dashed black line) is given by Eq. (4) for a film with no
confinement effects. The green curves are the free energy cost of
creating a pore when there is an additional contribution to the
edge tension from the molecular structure.
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