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We investigate the hydroelastic wake created by a perturbation moving at constant speed along
a thin elastic sheet floating at the surface of deep water. Using a high-resolution cross-correlation
imaging technique, we characterize the waves as a function of the perturbation speed, for different
sheet thicknesses. The general theoretical expression for the dispersion relation of hydroelastic waves
includes three components: gravity, bending and stretching. The bending modulus and the tension
in the sheet are independently measured. Excellent agreement is found between the experimental
data and the theoretical expression.

In 1963, Richard Feynman described water waves in
his famous Lectures on Physics [1] as “the worst possi-
ble example [of waves], because they are in no respect
like sound and light; they have all the complications that
waves can have”. Several decades later, some questions
remain unanswered and the study of these waves contin-
ues to be an area of great interest. For example, Kelvin’s
gravity wake behind a ship [2] still stimulates fundamen-
tal questions [3, 4]. Surface tension of the liquid-air in-
terface also influences the wave propagation, resulting
in gravito-capillary waves and wake [5–8]. Unlike the
gravity wake, the capillary wake appears ahead of the
perturbation [6]. This is particularly relevant for the lo-
comotion of insects [9–13], as well as for nanorheologi-
cal applications involving e.g. atomic-force microscopy
probes moving along thin viscous samples [14–16].

Other waves of interest are the ones that propagate on
elastic plates and membranes. Their properties are dic-
tated by both the bending and stretching rigidities of the
material [17]. Floating such an elastic sheet on a liquid
further leads to the coupling of the elastic waves to hydro-
dynamics. The resulting hydroelastic waves are of par-
ticular interest, as elastic sheets surrounded by fluids are
ubiquitous in nature. Examples can be found in fluid me-
chanics [18, 19], geophysics [20–23], and biophysics [24].
Hydroelastic waves are also relevant to practical appli-
cations in civil engineering [25, 26], as well as in energy
harvesting through piezoelectric flags [27] and control of
energy radiation by trucks moving on ice sheets [28]. In-
terestingly, the propagation of such waves can be finely
controlled in an optical-like fashion by using model thin
sheets with heterogeneous elastic properties [29]. Dif-
ferent properties of these waves, such as the wave re-
sistance or non-linear effects, have been further studied
theoretically [30, 31], including the overdamped limit of
lubrication settings where viscosity dominates over fluid

inertia [32–38]. The dispersion relation in the inertial
case was analytically derived and found to depend on
three components: gravity, bending and stretching [39].
A few experimental studies developed in different con-
texts have studied the limiting cases where only bending
and stretching [40, 41], or gravity and bending [20, 21],
contribute.

In this Letter, we study the hydroelastic wake cre-
ated by a perturbation moving at constant speed along
an elastic sheet floating on deep water. The waves are

(i)
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(iv)

(ii)

(iii)

FIG. 1. 3D schematics of the experimental setup. (i) Ro-
tating transparent annular tank (outer radius Rout = 50 cm,
inner radius Rin = 30 cm) filled with water to a depth of
about 16 cm, and with an elastic sheet floating atop. (ii)
Infrared beam-breaking setup to measure the angular speed
Ω of the elastic sheet. (iii) A pipette perturbs the surface
by blowing air, causing a wake to form. (iv) Light sheet and
dot pattern used to characterize the waves using the Schlieren
method [42]. (v) A camera is placed ∼ 2 m above the tank to
image the dot pattern.
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imaged using a high-resolution optical method. By us-
ing elastic sheets with different thicknesses, the bending
modulus of the sheet is varied over more than two or-
ders of magnitude. We find excellent agreement between
experimental data and the general theoretical dispersion
relation, accounting for the three different contributions:
gravity, bending, and stretching.

A transparent annular tank is filled with water, as
shown in Fig. 1. Thin elastic sheets of Elastosil R© (Wacker
Chemie AG) with nominal thicknesses h of 50, 100, 200,
250 and 350 µm, and lateral dimensions of 20 cm × 16 cm
are floated onto the surface of water. A thin rigid plas-
tic support (18 cm × 1 cm × 0.1 cm) is placed atop the
leading and trailing edge of the elastic sheet to ensure the
sheets do not crumple. We experimentally verify that
adding the supports does not introduce an anisotropic
tension in the sheet, by ensuring that the deformation
induced by ball bearings placed atop the sheet is axially
symmetric (see SI). The tank is rotated at constant an-
gular speed Ω, ranging from 0 to 2.5 rad.s−1, causing the
water to flow and the sheet to move. We take advan-
tage of the opaque plastic supports to measure the angu-
lar speed of the sheet, using an infrared beam-breaking
technique. Because of inertia, both the sheet and water
do not follow the tank’s speed instantaneously. Hence,
all experiments are performed only once the speed of the
sheet is constant and equal to the speed of the tank.

A glass capillary (World Precision Instruments, USA)
is pulled to a diameter of about 100 µm at one end
with a pipette puller (Narishige, Japan), and used to
blow air at the surface of the sheet (Fig. 1(iii)). The
pipette is placed in the middle of the tank, i.e. at a ra-
dius Rp = 40 cm from the center. The air jet acts as a
perturbation moving at speed v = ΩRp in the reference
frame of the elastic sheet, which generates an hydroelas-
tic wake. The latter is imaged using a synthetic Schlieren
method [42] involving a random dot pattern refracted by
the surface topography. The dot pattern is generated us-
ing Matlab [42, 43] and printed onto a transparency film.
Light shines through the dot pattern (Fig. 1(iv)) and the
wake, before being collected by a camera above the tank
(Fig. 1(v)). The Schlieren method consists in measuring
the apparent displacement of the dots due to light re-
fraction by the wake. The displacement is measured rel-
ative to a reference image of the unperturbed surface (i.e.
no air jet) moving at angular speed Ω – which ensures
that the collected information is only due to the wake.
This measurement is performed using an open-source dig-
ital 2D image-correlation algorithm (Ncorr, Matlab) [44].
From the displacement of the dots, one can access the
slope of the surface and thus the surface topography [42].

Figures 2(a,b) show a typical vectorial displacement
field. The air jet creates a localized perturbation in the
sheet, as evidence by the large magnitude of the dis-
placement field therein. Ahead of the perturbation, in
the reference frame of the elastic sheet, the upstream

FIG. 2. (a) Raw 2D dot-displacement data measured with
Ncorr [44], for an elastic sheet of nominal thickness h ≈

200 µm moved at speed v = 0.9 m.s−1. The displacement
vectors are only shown every 10 pixels for clarity. The bot-
tom arrow indicates the speed of the sheet, with respect to the
stationary air jet whose position is indicated by the red ar-
row. (b) Zoom around the perturbation, corresponding to the
black box in (a). (c) The y-component d of the displacement
field. Warm colours (green to orange) correspond to positive
displacements, while cold colours (green to blue) correspond
to negative ones. (d) Zoom around the perturbation, corre-
sponding to the black box in (c). All scale bars correspond to
1 cm.

wave pattern of the hydroelastic wake appears clearly,
with a dominant – centimetric – wavelength λ. As the
hydroelastic waves propagate along the y-direction, the
projection of the displacement along that direction pro-
vides the strongest signal for analysis. Figures 2(c,d)
thus focus only on the y-component d of the displacement
field. To characterize experimentally the dispersion rela-
tion of the hydroelastic wake, the wavelength λ is mea-
sured as a function of the speed v. Figures 3(a-c) show
the y-component d of the displacement field, for various
speeds. The wake is slightly tilted and not symmetric
about the y-axis, because of the centrifugal force and the
surface of water assuming a parabolic profile when ro-
tated. This distorsion is avoided in the wavelength mea-
surement by analyzing the displacement field normal to
the wave front, as shown in Fig. 3(a,d). We observe both
the wavelength and the displacement to decrease as the
speed increases.
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FIG. 3. (a) - (c) y-component d of the displacement field (see
Fig. 2), for speeds v = 0.4, 0.6, and 0.9 m.s−1, respectively.
All scale bars correspond to 1 cm. (d) y-component d of the
displacement field normal to the wave front (see red line in
(a)), as a function of the distance ∆x from the perturbation,
for the three speeds as indicated (shifted vertically for clarity).
The position of the air-jet perturbation is indicated by the
arrow.

In order to quantify further and rationalize these obser-
vations, we now introduce the relevant theoretical frame-
work. The mechanical system we consider is the thin
elastic sheet in its reference frame. Neglecting the solid
inertia owing to the slenderness of the sheet, the out-
of-plane displacement field z = ζ(r, t) with respect to its
flat horizontal state z = 0 satisfies the Föppl-von Kármán
equation [17]:

B∇ 4
r
ζ − σ∇ 2

r
ζ = P + Pext , (1)

along the 2D horizontal space coordinate r = (x, y) and
time t, where ∇r is the nabla operator in 2D, B is the
bending stiffness of the sheet, and σ represents the ten-
sion in the sheet. The first and second terms respec-
tively account for bending and stretching. The system
is further subjected to two external forces: the excess
hydrodynamic pressure P (r, t) (with respect to the at-
mospheric one) exerted on the sheet by the water flow
under gravity, and the driving pressure Pext(x, y − vt)
modelling the perturbation by the air jet translating at
constant speed v along y.
The water contribution, P (r, t), is calculated by as-

suming an incompressible and irrotational flow of an
inviscid fluid, in a semi-infinite half space located at
z < ζ(r, t). In this context, the fluid velocity field can
be written as ∇ϕ, where ϕ(r, z, t) is a potential that

vanishes in the far field and that satisfies Laplace’s equa-
tion [45]: ∇ 2ϕ = (∇ 2

r
+ ∂ 2

z
)ϕ = 0. At lowest order in

the flow (i.e. for small-amplitude hydroelastic waves),
the linearized Bernoulli equation for unsteady potential
flows provides the excess hydrodynamic pressure exerted
on the sheet: P = −ρ ∂ϕ/∂t|

z=0 − ρgζ, with ρ the liquid
density and g the acceleration due to gravity.
To obtain the dispersion relation, one substitutes the

expression for P into Eq. (1) in the absence of driv-
ing (Pext = 0), and invokes the kinematic condition
∂ϕ/∂z|

z=0 = ∂ζ/∂t at the water-sheet interface. Con-
sidering a plane wave ϕ ∝ exp[i(ky − ωt− ikz)] satisfy-
ing Laplace’s equation, with angular wavenumber k and
angular frequency ω(k), yields [39]:

ω =

√

Bk5

ρ
+

σk3

ρ
+ gk . (2)

We now consider the wake created by the driving per-
turbation Pext traveling at constant speed v along y.
In the comoving frame of the perturbation, the angular
frequency ω′ of a plane-wave component of the wake is
shifted by the Doppler effect, and thus reads ω′ = ω−kv.
Furthermore, since in that comoving frame the wake is
stationary, ω′ = 0 is a necessary condition. Using Eq. (2),
one thus obtains the central relation connecting the an-
gular wavenumber k and the perturbation speed v, for a
hydroelastic wake on deep water:

v =

√

Bk3

ρ
+

σk

ρ
+

g

k
. (3)

An extensive analysis of this relation, similar to the one
performed for the gravito-capillary case [7], reveals the
main features of the present wake (see also Fig. 4). First,
below a certain minimal speed v∗ wave propagation is im-
possible. Secondly, at a given speed v > v∗ there are two
possible values for the observed wavelength: i) the small-
est value corresponds to a group velocity that is higher
than the perturbation speed v, and therefore the waves
propagate upstream of the perturbation. This is the sit-
uation studied in the present work (see Figs. 2 and 3),
which is dominated by bending and stretching at suffi-
ciently large speed; ii) the largest value corresponds to a
group velocity that is lower than the perturbation speed
v, and therefore the waves propagate downstream of
the perturbation. This situation corresponds to Kelvin’s
classical wake [2], which is dominated by gravity at suf-
ficiently large speed.
The values of the bending modulus B and the tension

σ are measured independently. The bending modulus
B = Eh3/[12(1 − ν2)] depends on three parameters: i)
the Young’s modulus E = 1.11±0.06 MPa of Elastosil R©,
measured using the stress-strain curve; ii) the sheet thick-
ness h, depending on the sample and measured through
optical microscopy; iii) the Poisson’s ratio ν = 0.5, as-
suming that Elastosil R© is an incompressible elastomer.
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The values of h(µm) and B(N.m) for our five different
samples are found to be: (h,B) = {[51± 1, (1.6± 0.1)×
10−8], [104± 2, (1.4± 0.1)× 10−7], [213± 7, (1.2± 0.1)×
10−6], [258± 2, (2.1± 0.1)× 10−6], [362± 3, (5.9± 0.3)×
10−6]}. We note that the 362 µm film was obtained by
stacking two films with nominal thicknesses of 250 µm
and 100 µm. Besides, as the sheet is freely floating on
water, the tension in the sheet is equal to the air-water
surface tension: σ = γ. The latter is measured to be
γ = 50 ± 10 mN.m−1, as in [29], from two different
techniques (see SI): i) using a Wilhelmy-plate setup; ii)
characterizing the dispersion relation of gravito-capillary
waves on water. The low value of γ and the large un-
certainty are attributed to the fact that the tank is filled
with an important volume of tap water, and thus subject
to contamination.

As shown in Fig. 4 (dashed lines), using the above mea-
sured values of B and σ, one can predict the evolution of
the angular wavenumber k as a function of the perturba-
tion speed v. The uncertainties in B and σ are taken into
account through two limiting predictions and an interval
in between. Note that the uncertainty on σ accounts
for most of the spread between the two limiting predic-
tions. Interestingly, for the values of σ and B considered
here, all three terms in the right-hand side of Eq. (3) are
of the same order of magnitude, especially at low speed
v < 0.4 m.s−1 (see SI). This highlights the counterin-
tuitive role of gravity in the wavelength selection of the
upstream hydroelastic wake. Finally, as expected from
Eq. (3), all the theoretical curves for different h (and thus
B) collapse onto Kelvin’s gravity-dominated branch [2],
at both large v and small k.

Using the experimental procedure detailed above, we
measure the wavelength λ (see Fig. 3), or equivalently
the angular wavenumber k = 2π/λ, as a function of v.
The results for the five different sheet thicknesses h are
shown in Fig. 4 (data points). We find excellent agree-
ment between the experimental data and the theoretical
predictions, with no adjustable parameter. The experi-
mental data points for the two thinnest sheets seem to
be in slightly better agreement with the upper predic-
tion at low speed, and with the lower prediction at high
speed. This observation could perhaps be related to a
slight, but not quantifiable, increase in the sheet tension
due to the increase in curvature of the air-water interface.
Another interesting feature of Fig. 4 is that the difference
between the upper and lower predictions decreases as the
thickness h of the sheet is increased. Indeed, the relative
contribution of bending to Eq. (3) increases, and the dif-
ference between both predictions, which is mainly due to
the uncertainty in tension, decreases. Note that Kelvin’s
classical gravity-dominated branch [2] corresponds to: i)
a wake propagating behind the perturbation; ii) a wave-
length that would almost reach the meter range in our ex-
periments, which is not attainable with the current setup.

In this Letter, we have studied the hydroelastic wake

0 0.2 0.4 0.6 0.8 1
0  

0.5

1  

1.5
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FIG. 4. Angular wavenumber k = 2π/λ as a function of
perturbation speed v, for five different sheet thicknesses h as
indicated in the legend. Each data point was obtained using
the procedure detailed in Fig. 3 and an average over four
different experimental displacement profiles. The error bars
correspond to the standard deviation, which is comparable
to the marker size. For each thickness h, the blue and red
dashed lines separated by a grey region indicate the upper and
lower theoretical predictions obtained from Eq. (3), using the
independently-measured values of B and σ (see main text)
and their uncertainties.

formed by moving a thin elastic sheet, floating on water,
past a stationary air jet. Specifically, we experimentally
measured the wavelength of the wake as a function of the
perturbation speed, for sheets with bending moduli vary-
ing over two orders of magnitude. For thin elastic sheets
(thickness smaller than 100 µm), stretching plays a sig-
nificant role in the propagation of the waves. For thicker
elastic sheets (thickness larger than 100 µm), the bending
contribution becomes dominant – a regime that is par-
ticularly relevant for floating ice [20, 21, 28]. The results
are found to be in excellent agreement with theoretical
predictions, based on the elasticity of slender structures
coupled to the hydrodynamics of inviscid incompressible
flows, with no adjustable parameter. Interestingly, for
thin elastic sheets, bending, stretching and gravity all
contribute to the hydroelastic wake – a result with prac-
tical consequences in geophysics, biophysics and civil en-
gineering.
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TENSION ISOTROPY
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FIG. S1. (a) Top-view schematic of the elastic sheet floating on water. Plastic beams are placed at the leading and trailing edges
of the elastic sheet to ensure the sheet does not crumple. Ball bearings are dropped atop the sheet to verify that no anisotropy
is introduced when placing the beams. (b) Picture of the reference dot pattern, seen through the water and the sheet, around
a ball bearing. The solid lines are sample isodisplacement lines. The dashed lines are the best fits of the isodisplacement lines
to ellipses. The best-fit ellipticities are found to be equal to 1 for all cases.

A schematic of the elastic sheet is shown in Fig. S1(a). The tensions along the x- and y-axes are denoted σxx

and σyy, respectively. We place ball bearings directly on the sheet floating on water, and we image the resulting
deformation using the optical Schlieren method [1]. We then calculate the magnitude of the displacement vector field,
which is directly linked to the deformation of the elastic sheet. Sample isodisplacement lines are shown in Fig. S1(b).
We quantify the anisotropy of the deformation by fitting the isodisplacement lines to ellipses. The best-fit ellipticities
for the four cases shown in Fig. S1(b) are all found to be equal to 1, meaning that the isodisplacement lines are circles,
which thus indicates that the tension in the sheet is isotropic. Indeed, if σxx or σyy was larger than the other, the
deformation would be elongated along the low-tension direction, leading to an ellipticity larger than 1.

TENSION MEASUREMENT

The tension σxx along the x-axis is set by the water-air surface tension γ, as both the left and right edges are free (see
Fig. S1(a)). Since all the experiments presented in the study are performed on sheets where the tension is isotropic,
one can safely assume that σ = σyy = σxx = γ. The tabulated value for the pure water-air surface tension under
ambient conditions is γ = 72 mN.m−1, but it is extremely sensitive to contamination by all kinds of surfactants. The

http://arxiv.org/abs/1806.07472v1
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experiments being conducted in an open tank containing ∼ 200 L of water, contamination is unavoidable. Therefore,
γ was measured from two independent methods.

First, using a Wilhelmy-plate setup, γ was found to be between 40 and 55 mN.m−1, for water from three different
sources: water from the tank after one day, tap water, and deionized water. The largest value of γ was obtained for
deionized water, and the smallest one for the water from the tank – which is consistent with tank contamination over
time.
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FIG. S2. Angular wavenumber k as a function of perturbation speed v, for the gravito-capillary wake at the surface of
deep water. The dashed line shows the best fit of Eq. (S1) to the experimental data points. The water-air surface tension
γ = 47 mN.m−1 is obtained as the only adjustable parameter.

Another approach to measure γ is to invoke the gravito-capillary wake formed at the surface of deep water by a
perturbation moving at constant speed v. In such a case, the analogue of Eq. (3) is [2]:

v =

√

γk

ρ
+

g

k
. (S1)

Therefore, γ can be evaluated by fitting Eq. (S1) to the experimental evolution of the angular wavenumber k as a
function of speed v for a gravito-capillary wake. In fact, as the elastic sheet only covers a small portion of the water in
the tank, the hydroelastic wake is only observed once a lap when the sheet moves across the stationary perturbation
at speed v. Otherwise, water flowing at speed v is directly exposed to the perturbation, and a gravito-capillary wake is
instead formed at the surface. Using the Schlieren method, the wavelength λ = 2π/k of the upstream gravito-capillary
wake is measured as a function of speed v. The measurements of the wavelengths for both the hydroelastic and the
gravito-capillary wakes are thus performed simultaneously. Figure S2 shows the evolution of the angular wavenumber
k as a function the speed v, for the gravito-capillary wake. By fitting the experimental data to Eq. (S1), one finds
γ = 47 mN.m−1.

Note that the last measurement was performed during the characterization of the hydroelastic wake on a sheet
of thickness h = 50 µm. Similar measurements were also performed during the characterization of the hydroelastic
wake on sheets with larger thicknesses h = {100; 200; 250} µm. However, in those cases, the wavelength for the
gravito-capillary wake was measurable only for the lowest speed, v ≈ 0.2 m.s−1. For all those three measurements,
we get γ = 47 mN.m−1. Considering all the measured values from both methods, we reach the conclusion that
γ = 50± 10 mN.m−1.



3

CONTRIBUTIONS OF BENDING, STRETCHING AND GRAVITY

Let us consider Eq. (3). The first term in the square root corresponds to bending, the second one to stretching,
and the third one to gravity. Using all the measured values for B, and the value of σ, the respective contributions of
those three terms, as well as their sum, are computed from Eq. (3) and plotted in Fig. S3. We experimentally measure
angular wavenumbers ranging from 400 to 2000 m−1 (see Fig. 4). For the thinnest film h = 50 µm (Fig. S3(a)),
all three terms do contribute in that range. The elastic sheet with h = 100 µm shows an interesting behaviour
(Fig. S3(b)): at low angular wavenumbers (k < 1000 m−1), all three terms are relevant, while bending becomes
predominant at larger angular wavenumbers. Finally, for the three largest thicknesses, h = 200, 250, and 350 µm
((Fig. S3(c-e))), bending clearly dominates.
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FIG. S3. Contributions of bending, stretching and gravity in Eq. (3). The five panels correspond to different thicknesses (and
thus bending moduli B) – from left to right: h = 50, 100, 200, 250, and 350 µm. The blue line corresponds to bending (Bk3/ρ),
the red line to stretching (σk/ρ), and the green line to gravity (g/k); while the dashed line represents the sum of the three
contributions.

∗ thomas.salez@u-bordeaux.fr
[1] F. Moisy, M. Rabaud, and K. Salsac, Exp. Fluids 46, 1021 (2009).
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