Eur. Phys. J. E (2011) 34: 131
DOI 10.1140/epje/i2011-11131-7

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article

Dynamics of interacting edge defects in copolymer lamellae

J.D. McGraw!, L.D.W. Rowe!, M.W. Matsen?, and K. Dalnoki-Veress!+*

! Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University, Hamilton,

ON, Canada

2 School of Mathematical and Physical Sciences, University of Reading, Whiteknights, Reading, UK

Received 16 August 2011

Published online: 21 December 2011 — (© EDP Sciences / Societa Italiana di Fisica / Springer-Verlag 2011

Abstract. It is known that terraces at the air-polymer interface of lamella-forming diblock copolymers do
not make discontinuous jumps in height. Despite the underlying discretized structure, the height profiles
are smoothly varying. The width of a transition region of a terrace edge in isolation is typically several
hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and
the enthalpy of mixing. What is less well known in these systems is what happens when two transition
regions interact with one another. In this study, we investigate the dynamics of the interactions between
copolymer lamellar edges. We find that the data can be well described by a model that assumes a repulsion
between adjacent edges. While the model is simplistic, and does not include molecular level details, its
agreement with the data suggests that some of the the underlying assumptions provide insight into the

complex interplay between defects.

1 Introduction

Diblock copolymers are formed when two chemically dis-
tinct polymer chains, “A” and “B”, are covalently bonded
together. Self-assembly of these molecules into composi-
tionally periodic structures occurs when different species
of the molecules have a sufficiently unfavourable inter-
action energy [1]. For the simplest case in which the
molecules’ A and B blocks are roughly the same size, a
lamellar morphology is observed. Within the lamellae of
a well-ordered system, the periodic change in the concen-
tration of a given chemical species depends on the size of
the molecule. The repeat period has a well-defined value,
H,, and each lamella consists of a bilayer of molecules:
A — B/B — A. The characteristic lengthscale of the mor-
phology given by H, is the result of a balance between an
enthalpic repulsion of the A and B blocks, and the entropy
which favours a random coil configuration. The repeat pe-
riod of the bilayers is on the order of the radius of gyration
of the molecule (~ 10 nm) and is controlled by the product
xINV; where N is the number of monomers in the polymer
chain and x is the Flory-Huggins parameter which defines
the chemical incompatibility of the A and B segments [2].
Similarly, the degree of ordering is also determined by y V.
Values of x/N much greater than 10 lead to strong segre-
gation of the blocks, with the A — B junction points of the
diblocks confined to nearly two-dimensional planes. x is
a decreasing function of the temperature since the degree
of order must also decrease with temperature. When yN
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decreases, the junctions make increasingly greater excur-
sions from their strongly confined two-dimensional planes
until finally all order is lost in passing through the or-
der disorder transition (ODT). More exotic morphologies
can be observed when the lengths of the two blocks differ,
thereby encouraging curvature at the interfaces [1,3].

Diblock copolymers serve as model systems for study-
ing self-assembly, with promise for data storage [4, 5],
adhesion [6], and photonics applications [7], among oth-
ers [7]. The phase behaviour and morphology of these sys-
tems in the bulk is well established both theoretically and
experimentally [1,8-12]. However, when confinement di-
mensions approach those of the micro-phase separation,
novel structures emerge. In such cases, the molecules pay
an energy penalty in conforming to the geometry of con-
finement. Furthermore, it is typical for there to be a pref-
erence for either the A or B block to contact the confining
interface. The preferential interaction can provide further
frustration from the ideal bulk morphology and even in-
duce order at temperatures above the bulk ODT [13-17].
Confinement of a diblock copolymer by a non-deformable
interface has been termed hard confinement. Such systems
have received much attention, resulting in a rich vari-
ety of phases that have been predicted and observed for
systems under planar, cylindrical and spherical confine-
ment [7,18-23].

Soft confinement of diblock copolymer systems, where
the confining interface itself may deform as a result of
the underlying diblock morphology, reveals an additional
complexity to the interplay between the optimal bulk mor-
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Fig. 1. Schematic cross-section of a) an as-prepared ring, and
b) its condition upon annealing for a short period of time. The
positions, x;, of lamellar edges for a stack with 3 bilayers (n =
6) are also shown schematically; in this study, z, —z1 ~ 7 pum
is typical. ¢) AFM topography line profiles of isolated edges.

phology and the interface. Perhaps the simplest example
of soft confinement is provided by the free interface of
a thin symmetric diblock film supported on a substrate.
In such a case the hard confinement of the substrate will
typically show a preference for one of the blocks which
orients the lamellae parallel to the substrate. However,
the soft free interface is able to deform to minimize the
free energy of the system which has a profound effect on
the morphology of the air-polymer interface [24,25]. For
the case of a lamellae-forming diblock, the ability of the
free surface to accommodate the layers can result in a ter-
raced height profile, with steps in the height of the film
that correspond to a molecular bilayer with height H,.
To understand the formation of terraces on the free
surface, take for example a diblock film with thickness
h under symmetric wetting conditions (the substrate and
free interface favour the same block). In the ordered state,
the ideal thickness at any point in the film is commensu-
rate with an integer number of bilayers, h = kH,, where k
is an integer. That is, a continuously varying topography
will develop into a terraced free surface upon ordering.
The transition from continuously varying topography to
a terraced height profile is shown in figs. 1a) and b) for
the asymmetric wetting case. For asymmetric wetting, the
substrate and free surface favour the opposite species. In
this case there exists an additional diblock monolayer at
the substrate to satisfy the wetting condition of A at one
interface and B at the other [25]. Asymmetric wetting is
observed in the work discussed here and illustrated by the
nearest-to-substrate monolayer shown in fig. 1b).

Away from the transition region where the topogra-
phy changes by one lamellar step, the preferred lamel-
lar spacing, H,, is the result of an interplay between the
chain stretching and interfacial energies [2]. However, in
the transition from one terrace to the next, a discrete step
function results in a significant cost to the free energy be-
cause of the excess surface area. Instead the transition re-
gion is broadened by the Laplace pressure. Thus, a larger
surface tension will result in a broader transition. The de-
tailed shape and morphology of the transition between
terraces has been studied by several groups in the past
decades [26-29]. It has been found that the transition re-
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gion can induce a number of different morphologies de-
pending on the polymer and substrate combination as the
underlying equilibrium morphology is frustrated by the
non-ideal confinement of the interface. The internal struc-
ture can be a dislocation [26,27], lamellae oriented perpen-
dicular to the interface [28], and cylindrical domains [29].
The morphology of asymmetric diblock copolymer liquids
which favour morphologies more complex than lamellae
can also be affected by the thickness gradient in the tran-
sition region [30].

In fig. 1c) is shown an atomic force microscopy (AFM)
measurement of the topography of several lamellar transi-
tion regions in a poly(styrene-methyl methacrylate) (PS-
PMMA) thin film. While the experimental details are de-
scribed below, it is immediately clear that the edge is not
discontinuous, but is smoothly varying. The resulting to-
pography is an edge defect with a cost to the free energy
of the system that is minimised by an interplay between
the interfacial and stretching energies as discussed above.
Recent studies by Croll and coworkers [31] and Kim and
Matsen [32] have investigated the detailed shape of sym-
metric diblock copolymer droplets in the ordered state. It
was found that when the distance between two edges be-
comes small, there is an interaction between the defects.
In the work by Croll and coworkers, AFM images revealed
that the droplets self-assemble into a nearly conical shape
of terraced disks reminiscent of Mayan temples. The shape
of the droplets was understood in terms of a model which
included a repulsive interaction between the edges.

Qualitatively, the origin of the repulsive interaction is
easily understood. As two edges, each with an equilibrium
height profile similar to that shown in fig. 1¢) approach
each other, their shapes must change from ideal which
results in an energy penalty. In [31] an empirical, expo-
nentially decaying, repulsive interaction was found to give
good agreement with the experiments; however, the agree-
ment was not sensitive to the exact functional form of
the interaction. Furthermore, while the morphologies of
diblock droplets were remarkable, the cylindrically sym-
metric geometry results in a complexity not related to the
edge interaction alone. Specifically, the disks which make
up the droplet have curvature, resulting in an edge ten-
sion contribution to the free energy that scales linearly
with the radius of the disk. The equilibrium nature of the
study and dependence on edge tension resulted in an in-
herent insensitivity to the functional form of the defect
interaction [31].

With a view towards gaining a more general under-
standing of the interaction between topological defects we
focus here on the dynamics of the interplay between the
transition region in a simplified geometry. We have re-
cently learned to prepare polymer tori on a substrate [33].
These structures form much like a nanoscale version of a
rim left behind by an evaporating droplet, e.g. the stain
left behind by a coffee spill [34-36]. These rings are not
perfect tori: upon preparation the cross-section of the ring
is asymmetric and also forms a very thin layer interior to
the ring as shown by the schematic in fig. 1 [33]. If the
rings are prepared so that they are thin but have a large
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Fig. 2. a) AFM tapping amplitude of a copolymer ring that
has been annealed at 180 °C for 2 hr; the image is 20 um wide.
b) A close up of another ring, a 10 um scan.

radius so that the in-plane curvature is small, then we will
show that it is possible to ignore the contribution of the
edge tension to the change in free energy. Neglecting the
edge tension simplifies the system significantly.

These samples provide an ideal geometry for the study
of the edge interactions for two reasons. First, we can treat
the system as 2-D with no change in the free energy due
to edge tension. Second, once the the terraces develop (see
fig. 1b)), the only interaction that drives changes in the
morphology is the interaction between edges. In equilib-
rium all layers must be centred such that the stack is sym-
metric about the midpoint of the rim (e.g., in fig. 1b), this
corresponds to (z1 + xg) = (x2 + 25) = (x3 + x4)). By
studying the evolution from the initial asymmetric edge
distribution towards a symmetric one, it is possible to
investigate the form of the repulsive interaction between
edges.

2 Experiment

The ring samples were prepared using the method as
described previously [33]. Briefly, a droplet of methanol
covers the surface of a 1 x 1 cm? Si wafer (University
Wafer). A small syringe (~ 0.5 mm diameter) filled with
polymer dissolved in toluene is suspended just above the
methanol bath. A small droplet of the polymer solution
is allowed to fall into the methanol bath and spin coating
at approximately 4000 rpm is immediately initiated. Here
the polymer is soluble in toluene, and toluene is misci-
ble with methanol. However, the polymer is not soluble
in methanol. As the droplet of polymer solution falls into
the methanol bath, the rapid shearing during spincoating
breaks the drop into many tiny droplets, some of which
land on the substrate. Toluene within these droplets ex-
changes with the methanol causing the diblock to pre-
cipitate and form rings [33]. With appropriate timing it
is possible to find polymer ring sections scattered ran-
domly over the substrate. Typical dimensions for the rings
are approximately 200 nm in height, 50 ym in diameter
and 5 pm wide, making them ideally suited for study by
AFM (Veeco Caliber). In contrast with our previous work
on the evolution of homopolymer rings [33], here a sym-
metric diblock copolymer, PS-PMMA, was used (Polymer

Page 3 of 7

amplitude (au)

—
W

—_
(=]

time (hr)

93]

amplitude (au)

Fig. 3. From the bottom up: a portion of an AFM image as
in fig. 2b) for ¢ = 2hr of annealing; its vertically averaged
line profile; data points for the extrema which correspond to
the lamellar edges from AFM scans after cumulative annealing
times; the top two panels are analogous to the bottom two,
except they are for data taken after ¢ = 20 hr of annealing.
The scale bar and separations between adjacent tick marks
on the horizontal scale in the central portion are 1pm wide.
All portions of the figure have the same horizontal scale. The
“spring-and-bead” schematic represents the mechanical system
discussed in the text with the potential given by eq. (4).

Source Inc. Dorval, Canada). The total molecular weight
was 46 kg/mol, with a polydispersity index of 1.05. So-
lutions of toluene and PS-PMMA were prepared with a
polymer mass fraction of approximately 0.5%.

The ring samples supported on the Si substrate were
placed on a heating stage (Linkam Scientific) and an-
nealed at 180°C for two-hour periods in ambient condi-
tions. Prior to the first annealing step, polymers are in the
disordered state and the rings are topographically indis-
tinguishable from those of a homopolymer ring, as shown
schematically in fig. 1a). After the first two-hour anneal-
ing step, the polymer chains phase separated into fully
developed lamellar structures. The terrace edges were eas-
ily identified with the AFM tapping amplitude signal, as
shown in figs. 2 and 3 (the AFM tapping amplitude or
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error signal can be interpreted as roughly the gradient of
the topography). The subsequent annealing steps allow us
to gather time-dependent edge positions, x;(t) as defined
in fig. 1a). The edge positions were determined by finding
the extrema in the tapping amplitude line profiles (fig. 3).

To obtain the data presented in fig. 1c) of an isolated
terrace edge, a thin film of PS-PMMA was spincast onto a
1 x 1 cm? Si wafer. The resulting film, prepared such that
it was incommensurate with the lamellar spacing of the
diblock, resulted in a surface perforated with holes upon
annealing at 180°C for several hours. The holes were of
various lateral sizes and had a constant depth correspond-
ing to the height of a single bilayer, H, ~ 30 nm. AFM
in tapping mode was used to obtain topography data of
holes with radii ranging from 2 pum to 7 um (note that this
is larger than the transition region between two lamellar
terraces). Furthermore, all line profiles were taken perpen-
dicular to the transition between the two lamellar teraces
present at the air-polymer interface. Transition profiles, ir-
respective of the diameter of the holes studied, were iden-
tical and are shown in fig. 1¢). The perturbation due to
the transition from one terrace to the next ranges approx-
imately 0.5 um, which compares favourably with results of
previous workers [26,28,29].

3 Experimental results

The perturbation induced by an edge results in a cost to
the free energy as two edges approach one another [31].
Starting from the asymmetric distribution of the edges,
the equilibrium configuration should result in a symmet-
ric topography. In the central panel of fig. 3 the position of
each edge is shown as a function of increasing time as the
topography evolves. As expected, the last measurement
at 20 hours of annealing is symmetric, with intermedi-
ate times providing the evolution of the edges. The ring
observed contained n = 12 edges (six bilayer lamellae).
In addition to the twelve bilayer edges, there is one edge
in contact with the substrate. This edge corresponds to
the monolayer carpet of molecules which forms because
of the asymmetric wetting conditions of our experimental
system (see fig. 1b)). During the course of the expriment,
there is no observable change to this monolayer. Just as in
earlier work on droplets [31], the monolayer position does
not measurably affect the remaining lamellae in the stack.
Thus, here we focus only on the stack of lamellae on top
of the monolayer. The positions of the edges as shown in
fig. 3 are always measured with respect to the bilayer edge
furthest from the centre of the ring, i.e. ;1 = 0 as shown
in fig. 1b).

Measurements of lamellar edge dynamics as shown in
fig. 3 were made for multiple rings. The rings studied had
five, six and seven bilayers, all with slightly different ini-
tial conditions. Due to the fabrication procedure, the ring
profile always has a steep side facing the substrate and a
shallower side facing the central portion of the ring, and
the initial edge configurations are always similar to that
shown schematically in fig. 1b). For all the rings studied,
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Fig. 4. Three plots of edge position as a function of annealing
time for different rings. The black lines are best fits of the
model described by egs. (2), (3) and (4) to the experimental
data.

the data is qualitatively similar to that shown in fig. 3. To
demonstrate this consistency, three additional edge tra-
jectories from distinct rings with five or six bilayers are
shown in fig. 4.

4 Model

Figure 3 demonstrates that the configuration of lamellar
edges is not static in time. Rather, there is an interplay of
forces which causes them to move toward a state of lower
free energy. To describe the evolution of these trajectories
quantitatively, we resort to a simplified classical picture.
We stress that in this tentative model we have not at-
tempted to rigorously derive a molecular level description,
as that currently eludes us. However, given the existence
of an unfavourable repulsive interaction between edges, it
is possible to elucidate the form of that interaction.

The model can be understood in its simplest terms
from the following ingredients: 1) As is clear from fig. 2,
there is little curvature of the edges in the lateral direc-
tion. Thus, the edge tension does not significantly con-
tribute to changes in the free energy. 2) We assume that
volume is conserved within the region that we are inves-
tigating. The validity of this is easily verified experimen-
tally as discussed below. 3) While the molecular details
are complex, we can think of the edges as being acted
upon by a repulsive force. The edges move, while conserv-
ing volume, so as to minimise the total interaction. 4) The
system is highly dissipative because of the viscous environ-
ment. While complex molecular mechanisms are at play,
we model the dissipation in the simplest possible way: the
velocity with which the edges move is proportional to the
force acting upon them.

Before the details of the model are developed further,
we provide a few more comments about the link between
the simple classical model, and the real molecular sys-
tem. Clearly, it is not the case that the edges represent
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a rigid interface upon which a force acts, akin to pistons
responding to a force in a viscous fluid. The molecules
within each lamella exchange with neighbouring lamellae
in response to a pressure or difference in potential. This
exchange conserves volume, is dissipative, acts to mini-
mize the free energy of the entire system, and should be
taken as analogous to the simpler mechanical model we
discuss here. It is the hope that a future detailed theoret-
ical model, including the cost of the defects, can provide
a more rigorous treatment.

In the simple classical picture, the energy of two adja-
cent lamellar edges is a function of the distance between
them. For a given lamellar stack, as shown schematically
in fig. 1, the total free energy is the sum of contributions
from all pairs of edges,

n—1

F({zi}) = Fo Z g(w;), (1)

i=1

where w; = x;4+1 — x; is the distance between edges, F,
is a constant which sets the energy scale and n is the
number of lamellar edges in the stack of n/2 bilayers. g(w)
is the function that describes how the free energy of two
lamellar edges changes when they approach one another;
only nearest neighbour edge interactions are taken into
account. In principle the interaction between the edges
that represent the top layer might have an interaction that
differs from g(w). For simplicity we have assumed this
interaction to be of the same form.

The dissipation is included with an energy term of the
form W; = —(i#?/2 [37], where ( is a constant and the
dot denotes differentiation with respect to time. As stated
above, we limit ourselves to systems where the volume is
conserved. In fact, material flows tangentially along the
rings, changing the volume within the cross-section of the
ring studied. A clear example of significant tangential flow
is shown in fig. 5. However the flow on this larger length
scale occurs on a longer time scale than that for which we
apply the model. Conservation of volume is equivalent to
stating that the sum of the lamellar widths is constant.
That is, £ = Z?:/f (p—i+1 — ;) remains constant. Mul-
tiplying £ by H, gives the area of the stack, and so LH,
can be seen as the differential volume element of the ring.
Strictly speaking, the edge perturbs the thickness of the
lamellae near the edge (see fig. 1c¢)) which accounts for the
flow around the circumference of the ring which breaks up
into individual droplets (fig. 5). The morphology is remi-
niscent of the Plateau-Rayleigh instability observed in our
previous work on homopolymer rings [33], although the
mechanism for the development of the morphology in the
symmetric diblock case is much more complex. Barnard
and co-workers have observed similar layered structures
prepared with dendrimers [35, 36].

The system under consideration is highly viscous and
we assume that inertial effects play a negligible role in the
evolution of the lamellar stacks. With this assumption and
using eq. (1) along with the constant volume constraint,
the Euler-Lagrange equations predict the classical trajec-
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Fig. 5. AFM tapping amplitude (top) and topography (bot-
tom) signal of a diblock ring in the late stages of annealing. A
Plateau-Rayleigh-like instability has developed and the ring is
showing the formation of four distinct droplets. The scan area
is approximately 54 x 54 pum?.

tories of lamellar edges:

%ﬁi =g/ (wi—1) — g'(wi) £ 7, (2)
T= [/ (w1) + ¢'(wa—1) = 29" (wnya)] - (3)

n—2

Here, Q = w2(/F, is the time scale of the system, w,
sets the range of the interaction. Furthermore, 7 is the
Lagrange multiplier introduced by the constraint of con-
stant volume. The first two terms result from the condition
&1 = &, = 0 which we impose based on our experimental
data. The Lagrange multiplier represents the difference in
net forces acting on the left- and right-hand sides of the
lamellar stack.

To compare the model to experimental data, we need
to choose the potential, g(w;), in eq. (1). As demonstrated
in [31] and [32], the approach of two lamellar edges forces
chains to deviate from their preferred lamellar structures
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and must cause a rise in the free energy. The potential,
g(w;), describes that interaction. We assume that the po-
tential is a monotonically decreasing function of the dis-
tance between the lamellae. In [31], an exponential form
was assumed for analytical convenience, however that ex-
periment was sensitive to the strength but not the form of
the interaction. We have found that an exponential form
does not describe the evolution of the edges acceptably.
Here we propose a simple potential that gives rise to a
distance-dependent repulsion: a truncated quadratic po-
tential of the form

g(w;) = (1 - ‘%‘)2

0, otherwise.

if Jw;| < w,,

(4)

This functional form is appealing as it is a purely repulsive
Hookean potential which smoothly drops to zero when the
distance between edges increases to |w;| = w, (as depicted
by the bead-and-spring schematic in fig. 3). With an initial
condition supplied to eq. (2), it is possible to compute edge
trajectories using the potential described in eq. (4). The
trajectories were computed for various values of w, and
@, using a fourth-order Runge-Kutta algorithm.

5 Discussion

As seen in figs. 3 and 4, the model provides a good fit to
the experimental data with w, = 0.49+0.02 ym and @ =
0.5+ 0.2 hr. We note that the fits are strongly dependent
on the length scale, but less sensitive to the time scale. The
uncertainties reflect the statistical distribution of the best
fitting parameters of our nine measured edge trajectories
(four of which are shown in figs. 3 and 4). In selecting
rings to analyze, we have discarded any data that do not
satisfy the constant volume constraint described in sect. 4.
Thus, whenever the net circumferential flux of molecules
at the point of measurements becomes non-zero, we cease
consideration of the data set. For this reason the time
scales in fig. 4 are not all the same.

Having demonstrated that the model is consistent with
the data, we now discuss some implications and limita-
tions of the analysis and experiment. The results presented
provide further credence to the idea that the edges of di-
block copolymer terraces repel one another. Furthermore,
the data is sensitive to the chosen potential. While we have
tried to model the data using an exponential potential (as
in [31]) it was not possible to obtain acceptable fits for all
data sets. Additionally, even only considering data sets for
which acceptable fits were possible using the exponential
potential, the fit parameters were not consistent with one
another. In contrast, the Hookean form of the repulsion
provided satisfactory fits to multiple rings with a range
of initial conditions while the two fitting parameters were
consistent for each case.

As discussed, the quadratic potential does not capture
the complete picture: 1) While the Hookean model is ap-
pealing for its simplicity and consistent with experimental
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results, we cannot exclude the possibility of other forms
of the interaction which may also provide satisfactory re-
sults. 2) We have not considered molecular level details,
but have instead attempted to give a minimal description
which captures the essence of the problem. The potential
described by eq. (4) is purely repulsive for edge separa-
tions less than w,. One can compare the value of w, as
determined from best fits of the dynamical edge trajecto-
ries, w, ~ 0.5 pm, to the profile width of isolated edges
as shown in fig. 1c). From the figure it is clear that the
lengthscale over which the presence of an isolated edge
relaxes away is similar to w,. Clearly a repulsive interac-
tion cannot exist until these perturbed regions between
two edges overlap. To put it another way, it is the profile
width of isolated edges in equilibrium that controls the
dynamic response of interacting lamellar edges. This com-
parison gives a consistency which provides further support
for the proposed model.

The time scale is set by the parameter Q = w2(/F,.
Thus, having obtained the best fit values for the distance
and time scales, we can determine the ratio of the driv-
ing force and the dissipation. That is, F,/¢ = w?/Q =~
107'2 cm?/s. While dimensionally like a diffusion con-
stant, the process we have investigated in this study is
driven, so care must be taken in direct comparisons to
diffusion of diblocks. The dynamics of diblock copolymers
have been discussed by many authors in the past and dif-
fusion coeflicients for a variety of diblock copolymers span
a broad range of values including 107'? ¢cm?/s [38-40].

6 Conclusion

Understanding topological defects, and the interplay be-
tween them, underpins the control of morphologies. Here
we have used the simplest form of soft confinement, that
is, the confinement induced by a free interface, to inves-
tigate the interaction between steps in lamellae formed
by a symmetric diblock copolymer. The underlying bi-
layer structure responds to a continuously varying topog-
raphy by forming terraces — steps which correspond to the
height of one bilayer. If the variation in the height is steep
enough, then the terrace edges form close to one another,
and the edge defects interact via a long-range repulsion.
While the molecular details remain elusive, the source of
the repulsion is intuitive: an edge is a defect which per-
turbs the surface profile with an associated cost to the
surface energy. As two isolated edges approach, the per-
turbation deviates further, thereby deforming the equilib-
rium edge structure and increasing the free energy. We
have performed measurements of the dynamics of inter-
acting edges in structures with an asymmetric topography
which, for all practical purposes, varies only in one dimen-
sion. These structures are nanoscale rims that form on a
substrate much like the rim left by a coffee stain [33-36].
The asymmetric shape of the rim’s cross-section, steep
towards the outside of the ring and shallow towards the
middle, ensures that the steps associated with the terraces
have various distances between them. However, when only
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the repulsive interaction of the edges is present the equi-
librium morphology must be symmetric. By monitoring
the evolution towards that symmetric structure one can
elucidate the nature of the repulsive interaction using a
simple classical model: in a dissipative system, the rate of
change in the position of an edge is proportional to the
force acting upon it, which in turn is dependent on the
gradient of the repulsive potential. Here we have found
that a Hookean repulsion between the edges is in good
agreement with the data. While we cannot exclude the ex-
istence of other equally successful repulsive interactions,
the best fit parameters provide additional evidence for a
Hookean form. Specifically, the width over which the inter-
action acts is of the same length scale as the equilibrium
perturbation of an interface by an isolated lamellar edge.

The authors thank Professor A.-C. Shi for valuable discussions.
Financial support from NSERC of Canada is gratefully ac-
knowledged.
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