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We probe the viscous relaxation of structured liquid droplets in the partial wetting regime using a diblock
copolymer system. The relaxation time of the droplets is measured after a step change in temperature as a
function of three tunable parameters: droplet size, equilibrium contact angle, and the viscosity of the fluid.
Contrary to what is typically observed, the late-stage relaxation time does not scale with the radius of
the droplet—rather, relaxation scales with the radius squared. Thus, the energy dissipation depends on the
contact area of the droplet, rather than the contact line.
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The dynamics of a liquid wetting a solid substrate has
applications in diverse technologies including oil recovery
[1], coating deposition [2], electronic paper [3], capillary
switches [4], and microfluidics [5]. Flow in liquids can be
driven by a number of forces (e.g., gravity, surface tension,
external electromagnetic fields), which are mediated by
inertial and viscous forces in the fluid. Large inertial forces
can lead to oscillatory motion [6–17], whereas viscous
forces cause damping. The study of the viscous (i.e., low
Reynold’s number) motion of wetting fluids has been the
focus of much research because it is typically dominant at
the micrometer and nanometer length scales (for reviews
see Refs. [18–23]), and it is the subject of the current Letter.
For a viscous liquid droplet that wets a substrate there are
two possible cases: complete wetting and partial wetting
depending on the presence and interplay of short- and long-
ranged intermolecular forces in the system [24]. In the case
of complete wetting, the final equilibrium state is that of a
flat liquid film of uniform thickness covering the substrate.
The dynamics of this process is well understood in both the
case of an initially dry substrate [24,25], as well as the case
where the substrate is covered by a prewetted film of the
same liquid [26]. On the other hand, in partial wetting the
final equilibrium state is a droplet that makes a well-defined
equilibrium contact angle θe with the substrate [24]. In this
case, the dynamics of a droplet as it moves towards
equilibrium is less well understood and there are unre-
solved fundamental questions [21], in particular involving
the nature of energy dissipation as a droplet spreads.
Exponential relaxation is a generic feature of near-

equilibrium partial wetting, having been observed in
capillaries [27,28], droplet coalescence [29–31], stripe
spreading [32], and droplet spreading [30,33–35]. For a
system with a well-defined volume Ω the relaxation time τ
of the exponential decay is a function ofΩ, θe, and the fluid
viscosity η. In the limit of small contact angles, there are

several different predictions for τðΩ; θe; ηÞ [32,34–39], but
there is a dearth of experimental systems where τ can be
systematically probed as a function of all three variables.
The lack of experiments is largely due to the fact that
contact angle pinning is the bane of careful dynamics
measurements especially at small contact angles [40] and
can occur at even dilute concentrations of defects [41].
Here, we use a liquid-substrate system that allows the

systematic probing of partially wetting droplets that coexist
with a nanoscopically thin layer of the same liquid (known
as pseudopartial wetting [42,43]), as shown schematically
in Fig. 1(a). Droplets with a well-defined θe coexisting in
equilibrium with a prewetted layer can arise from a single
global minimum (or even multiple minima in the case of
stratified films [44]) of the effective interface potential, i.e.,
the free energy of the system comprising repulsive and
attractive intermolecular interactions. Little is known about
the dynamics of moving contact lines in the partial wetting
regime with a prewetting layer [45]. The dynamics depends
on whether there is enough material to fully prewet the
substrate [46,47], and previous measurements of liquids in
a capillary subjected to a pressure difference saw no
evidence of contact line pinning in the case of a prewetting
layer, a problem that is common in partial wetting [45].
The system investigated here has negligible contact

angle hysteresis [44] and is ideally suited to probe the
exponential relaxation of droplets near equilibrium. The
lack of hysteresis results from the self-assembly of
the droplets on a metastable wetting layer of the same
material (rather than defect prone manual preparation). We
use a lamellar-forming diblock copolymer that dewets into
droplets with a quantized spectrum of contact angles.
While the details of the quantized droplet system can be
found in our earlier study [44], we recall some of the salient
features crucial to this work. The diblock copolymer liquid
can self-assemble into stacks of monolayers below the
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order-disorder transition temperature TODT, whereas order
is destroyed above TODT. In our experiments we work
above TODT; however, the substrate-liquid and air-liquid
interactions have a tendency to induce local ordering. Thus,
one can arrange the temperature of the experiment such that
a mostly disordered “bulklike” droplet coexists with a
wetting layer made up of a stack of monolayers [see the
schematic in Fig. 1(a)]. The wetting layer thickness he and
temperature T determine the free energy of the wetting
layer. As a result, the droplet contact angle depends on he
and T. An increase in T reduces the order in the wetting
layer, resulting in a smaller θe, and the droplet spreads.
Similarly, a decrease in T causes a droplet to recede.
Because a change in temperature shifts θe, we can examine
both advancing and receding droplet motion in a controlled
manner simply by performing a step change in the temper-
ature. Thus, we are able to systematically vary Ω, θe, and η
using a single liquid on a homogeneous substrate with no
chemical modification. By measuring the relaxation time of

droplets as they approach equilibrium, one can probe the
nature of energy dissipation in the droplets.
Previous work has shown that in the case of a simple

liquid droplet on a substrate with a small contact angle the
majority of the energy dissipation occurs near the contact
line, where there is the greatest shear [20]. For late-stage
relaxation, the instantaneous contact angle θ exponentially
decays to θe with a relaxation time [20,38,48] (see the
Supplemental Material [49])

τL ∝
η
γ
Ω1=3

θ10=3e
; ð1Þ

where γ is the liquid-air surface tension. To probe the
energy dissipation in a structured liquid and the role of the
prewetting layer, we examine the near-equilibrium (θ ≈ θe)
dynamics of droplets. We will show that, in contrast with
the assumptions made leading to Eq. (1), the relaxation of
the droplets is consistent with a contact area dependent
dissipation mechanism being dominant.
As described previously [44], thin films of polystyrene-

poly(2 vinyl pyridine) (PS-P2VP) diblock copolymer were
spincast onto silicon wafers from a dilute solution of
toluene at slow speeds to purposefully create films of
nonuniform thickness (the PS-P2VP was obtained from
Polymer Source Inc., Canada, Mn ¼ 16.5 kg=mol with an
equal block composition). Upon heating above TODT ¼
160 °C the liquid dewets into droplets coexisting with
ordered wetting layers. The contact angle of the droplets
was measured from Newton rings using optical microscopy
with a monochromatic filter (460 nm) as shown in Fig. 1(b)
[26]. A relaxation measurement was performed as
follows. The sample temperature is controlled using a
high-precision ($0.1 °C) heating device (Linkam, UK).
First, a droplet was held at T ¼ Ti until it reached its
equilibrium initial contact angle θi. At time t ¼ 0, the
temperature of the system was changed by 10$ 0.1 °C to
Tf. The temperature equilibrates rapidly (within 10 sec)
compared to the measurement time (tens of minutes). θðtÞ
was measured until the droplet reached its new equilibrium
contact angle θe. Figures 1(b)–1(d) show a typical meas-
urement of a droplet with an initial contact angle of 3.29°,
just as the temperature is rapidly changed from 180 to
190 °C. The approach to the equilibrium contact angle of
θe ¼ 2.69° for this advancing droplet is shown in the inset
of Fig. 1(d). Note that both the contact angle and the change
in the contact angle are small, validating the small angle
and θ ≈ θe approximations.
The relaxation time τðΩ; θe; ηÞ of 60 droplets was

measured at different Tf (between 180–210 °C) for droplets
of varying Ω and coexisting with different he (between
5–15 ordered monolayers). An exponential decay well
describes the droplet relaxation for both advancing and
receding contact angles [Fig. 1(d)]. There is negligible
contact angle hysteresis (< 0.1°) [44]; thus, θe does not
depend on whether the droplet is advancing or receding.
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FIG. 1 (color online). (a) Schematic of a mostly disordered
droplet, coexisting with an ordered wetting layer of the same
liquid. (b) Interference optical microscopy images showing the
relaxation of a droplet as it spreads. (c) Best fit spherical cap to
the data points from the interference fringes of the droplet in (b) at
t ¼ 0 (solid line) and at equilibrium as t → ∞ (dashed line). The
height scale is exaggerated as compared to the lateral scale for
clarity. (d) Normalized relaxation of the contact angle of 15
different representative droplets with different Ω and θe, which
undergo both advancing and receding motion. The solid line is
the function expð−t=τÞ. The inset shows the relaxation of the
contact angle of the droplet from (b) and (c) as a function of time
with an exponential fit (black line).
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The relaxation time, however, does depend on whether the
droplet is advancing or receding towards θe.
Previous studies [32,34–39] predict that, because the

dominant mechanism for dissipation is viscous dissipation
near the contact line, τ ∝ Ω1=3 [see Eq. (1)]. The data here,
however, are not consistent with this scaling (see Fig. S1 in
the Supplemental Material [49]). As the essential assump-
tions related to the contact angle are safely validated (i.e.,
θ ≈ θe < 10°) and the droplet volume stays constant to
within 5% as the droplet spreads, the only possible
explanation for the deviation from τ ∝ Ω1=3 is that the
assumption of contact line dissipation is wrong. If we write
a generalized power dissipation as Pðr; θÞ ∝ Krαθβ _r2, then
in the limit of near-equilibrium relaxation to a small θe, the
contact angle dynamics follows an exponential decay with
relaxation time (see the Supplemental Material [49])

τ ∝
K
γ

Ωα=3

θðα=3−βþ2Þ
e

: ð2Þ

In the case of purely viscous dissipation at the contact line,
K ¼ η, α ¼ 1, and β ¼ −1, which recovers the contact line
relaxation time of Eq. (1), as required. Here, the diblock
copolymer is an anisotropic fluid near the substrate: the
wetting layer consists of stacked monolayers and the base
of the droplet is also ordered. We might then suspect that
the base of the droplet could provide a mechanism for a
contact area dependent dissipation. In that case α ¼ 2 and
β ¼ 0, resulting in τ ∝ Ω2=3. In Fig. 2(a) we plot τ as a
function of Ω2=3 for four different values of Tf. Indeed, we
find that the data are consistent with a straight line going
through the origin.
For an area-dependent dissipation PA ∝ Kr2 _rðtÞ2 and

using Eq. (2), the relaxation time is

τA ¼ κ
γ
Ω2=3

θ8=3e
; ð3Þ

where κ ∝ K. Just as K ¼ η for pure viscous dissipation at
the contact line, here κ also governs the dynamics. Given
γ ≈ 31 mJ=m2 for the experimental temperatures used [50],
and by measuring τ, θe, and Ω experimentally, we can
obtain κ for each droplet. We find that κ is not a constant,
and depends on θe as shown in Fig. 3. Furthermore, κ
decreases as temperature is increased, and also depends on
whether the motion is advancing or receding.
For the diblock copolymer system, the dynamics repre-

sented by κ is more complex than η for a simple liquid. The
dynamics depends on both the mobility, or friction, of the
molecules as well as the degree of segregation of the two
blocks within the monolayers. In the limit of an unsegre-
gated wetting layer, the droplet will completely spread
(θe → 0) since the wetting layer and droplet would form a
homogeneous liquid. As θe → 0, the area-dependent dis-
sipation must also vanish and κ → 0 [26]. Conversely, with
greater induced order in the monolayers the area-dependent
dissipation increases. Since θe increases with greater
segregation of the wetting layers [44], this means that κ
must increase with θe. For small θe, and to first order,
κ ∝ θe, consistent with the linear fits shown as the solid
lines in Fig. 3. The molecular mobility at the base of the
droplet, while not equivalent to the viscosity due to the
presence of order, is still a molecular friction and can be
expected to scale with the viscosity, κ ∝ ηðTÞ. Thus, we can
then write κ ¼ θeη=ΛwithΛ a constant with a dimension of
length. This gives the area-dependent relaxation time as

τ ¼ ηΩ2=3

γθ5=3e Λ
: ð4Þ

Our data are consistent with this relationship (Fig. 4). Here,
we use η=γ ¼ 0.045 min=μm at 180 °C for PS-P2VP [51],
and the Williams-Landel-Ferry scaling of polystyrene [52]
to calculate ηðTÞ=γ. To recognize that the droplet relaxation
might be different for advancing and receding motion, we
allow Λ to differ for advancing Λa or receding Λr motion.
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FIG. 2 (color online). The relaxation time τ as a function of
Ω2=3 for different values of (Tf , he) (with correspondingly
different θe) as indicated in the legend, for receding and
advancing droplet motion. Solid lines are the best fit to a
τ ∝ Ω2=3 scaling with zero intercept.
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FIG. 3 (color online). The area-dependent relaxation prefactor κ
plotted as a function of θe (shown on a double logarithmic plot for
clarity of the data). κ is not a universal constant for the system,
and depends on T as well as θe. The lines are fit to κ ∝ θe.
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The difference in Λa and Λr indicates that relaxation is
faster for advancing than for receding when comparing
droplets with the same Ω and θe. This result can be easily
understood as follows. In a typical experiment the droplet
radius changes by approximately 15%. For a given Ω and
θe, receding droplets have a greater base area during the
course of their evolution, resulting in a stronger power
dissipation and slower relaxation times. We note that the
ratio Λa=Λr ¼ 1.4 roughly corresponds to the ratio of the
average receding droplet area to the average advancing
droplet area given the same volume and final contact angle.
The lack of contact angle pinning in this system has

facilitated measurements of the relaxation of a structured
liquid droplet in the partial wetting regime. A contact area
dependent dissipation describes the data within error using
only two adjustable parameters Λa and Λr. In previous
work on the spreading of disordered diblock copolymer
droplets in the absence of a prewetted film, a power law
consistent with Tanner’s law and proportional to Ω1=3 was
observed [53]. Thus, a purely viscous dissipation mecha-
nism dominates in the limit of no prewetted film for this
system. In contrast, the experimental results show the onset
of a secondary dissipation mechanism that is area depen-
dent and originates from the presence of the ordered
wetting layer.
The origin of the area-dependent dissipation could be

from the onset of a hydrodynamic slip boundary condition
at the base of the droplet, i.e., a nonzero horizontal velocity
of the fluid at the interface [54]. Interfacial slip has
previously been observed in a manifold of different
systems, ranging from small molecule liquids, e.g., n-
alkanes [55], which can have a prewetted layer similar to
the system studied here [56], to large molecule liquids like
polymers. In particular, slippage of polymeric liquids has
been subjected to extensive theoretical and experimental
studies (see Ref. [57] and the references therein), including
slip at polymer-polymer interfaces in multilayered films
[58]. The dissipated power of a slip mechanism due to

friction at a fluid interface scales with the contact area
between the moving fluid and the substrate, in contrast to
viscous dissipation, which predominantly acts in the
immediate vicinity of the contact line [24]. In thin polymer
films dewetting from hydrophobic substrates, it is precisely
the area dependence of the slip mechanism that has been
shown to govern the growth dynamics of holes [57,59,60]
as well as the appearance of characteristic instabilities of
receding liquid fronts [61]. Thus, our observations on the
area-dependent droplet relaxation dynamics are consistent
with interfacial slip between the (disordered) droplet and
the (well-ordered) wetting layer.
The onset of a hydrodynamic slip boundary condition

could be the result of the structure of the diblock copolymer
molecules near the interface and an anisotropy in their
dynamics [62,63]. In a previous molecular dynamics study,
the degree of hydrodynamic slip was shown to be related to
the microscopic structure induced by the interfaces of a thin
fluid film [64]. This idea has also been supported by
experimental findings on the interfacial molecular structure
of polymeric liquids that exhibit a significant amount of slip
[65]. In the case of droplet dynamics, as the droplet spreads
its height decreases to conserve volume, and this flow
perpendicular to the layers would be hindered by the
anisotropy in the dynamics leading to an apparent inter-
facial slip between successive layers of fluid.
In summary, we have measured the relaxation time of

droplets of a structured liquid in the pseudopartial wetting
regime as a function of three tunable parameters, droplet
volume, equilibrium contact angle, and viscosity,
τ ¼ τðΩ; θe; ηÞ. For the first time, we are able to vary
these parameters on the same sample leading to quantita-
tively comparable measurements. The diblock copolymer
used provides a robust system for the measurement of
contact angle dynamics because there is negligible pinning
of the contact line (< 0.1°). The ideal nature of this system
is the direct result of the pseudopartial wetting regime:
rather than manually preparing droplets on an ideal surface,
the droplets can self-assemble on a metastable wetting layer
of the same material. In all 60 experiments we observe that
the droplet relaxation scales with the base area of the
droplet. This is in direct contrast with the spreading of
simple liquids where the energy is dissipated near the
contact line of the droplet, and scales with the radius. The
area-dependent dissipation can be interpreted as arising
from the presence of anisotropic molecular dynamics
leading to an apparent interfacial slip.
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receding (squares) contact line motion. The lines are the best fit of
Eq. (4) to the data, with Λa ¼ 22$ 1 μm and Λr ¼ 16$ 1 μm.
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I. DERIVATION OF RELAXATION TIME FOR NEAR EQUILIBRIUM DYNAMICS WITH
CONTACT-LINE DISSIPATION

In order to derive the relaxation time of the partially wetting droplets, we employ Frenkel’s method [1] in which the
dissipated power is equated to the rate of change in energy from the driving force. In this section we will show the
derivation of for the case of dissipation solely at the contact line case. We first review some aspects of the spherical
cap geometry.

A. Small angle approximation of a spherical cap

The volume Ω of a spherical cap is related to the droplet height h and base radius r by

Ω =
π

6
h(3r2 + h2) (1a)

Ω ≈
π

2
hr2 (small angle approximation). (1b)

The contact angle θ is given by

cos θ =
r2 − h2

r2 + h2
(2a)

θ ≈
2h

r
(small angle approximation). (2b)

Assuming a constant volume Ω, the relative change of droplet height with radius is given by taking d/dr of Eq. (1a),
and using Eq. (2a)

dh

dr
=

r

h
(cos θ − 1). (3)

Using Eq. (1b) and Eq. (2b) with the small angle approximation for cos θ, gives the droplet contact angle in terms of
the radius

θ ≈
4Ω

πr3
, (4)

and

dθ

dr
≈

−2θ4/3

Ω1/3
. (5)
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B. The driving force of partial wetting

Here we consider a droplet of liquid with surface tension γ, initial radius r, height h, and contact angle θ. The
droplet is spreading on a wetting layer with an effective interface potential of Φ. We assume that the droplet is much
larger than the wetting layer so that the effective interface potential is zero inside that droplet, and the droplet volume
Ω is conserved. The droplet, initially not at equilibrium, will spread towards an equilibrium radius rf , height hf and
contact angle θe. The contact angle θe can be written as Φ = γ(cos θe − 1). The excess free energy of the system is

∆F = (Φ+ γ)π(r2f − r2) + γπ(r2 + h2
− r2f − h2

f ), (6)

where the first term is energy difference due to the change in wetting layer area, and the second term results from
the difference in the surface area of the droplet. The driving force pushing the contact line at the edge of the droplet
towards rf is

F = −
∂∆F

∂r
= (Φ+ γ)2πr − γ2π

(

r + h
dh

dr

)

. (7)

Then using Eq. (3) for dh/dr and Φ = γ(cos θe − 1) we obtain

F = 2πrγ(cos θe − cos θ) (8a)

F ≈ πrγ(θ2 − θ2e) (small angle approximation). (8b)

C. Dissipation

In the case of a simple droplet spreading on substrate, the majority of the dissipation in the spreading of a droplet
with a small contact angle occurs near the contact line. The viscous dissipative power Pv scales with the fluid viscosity
η as [1]

Pv ∝ ηrθ−1

(

dr

dt

)2

. (9)

Given the driving force (Eq. (8b)) and power dissipation (Eq. (9)), we can solve for the velocity at the contact line
using P = F (dr/dt), which gives the Hoffman-de Gennes law

dr

dt
∝

γ

η
θ(θ2 − θ2e). (10)

This is consistent with the work of Brochard-Wyart and de Gennes[2]. The two variables r and θ in this differential
equation are related through the droplet volume Ω which we take to be a constant. Thus Eq. (10) is an ordinary
differential equation in one variable. The two different formulations of the differential equation result in the same
characteristic timescale of droplet relaxation for droplets close to their final state, namely θ ≈ θe and r ≈ rf . Below
we first solve the ODE in terms of the contact angle, and then show that formulating the ODE in terms of the droplet
radius gives the same result.

D. ODE in θ

Using Eq. (5) to replace dr/dt with dθ/dt,

dθ

dt
∝

γ

ηΩ1/3
θ7/3

(

θ2e − θ2
)

. (11)

Letting x = θ2/θ2e , leads to the differential equation

dx

dt
∝

γθ10/3e

ηΩ1/3
x5/3 (1− x) . (12)
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In the limit as θ → θe, x → 1, the differential equation can be approximated to first order by

dx

dt
= −τ−1(1 − x), (13)

with

τ =
kηΩ1/3

γθ10/3e

≡ τL. (14)

Here k a global constant of proportionality, and the subscript in τL refers to the contact-line dissipation. This has
solutions of an exponential relaxation in x with characteristic timescale τ

1− x

1− xi
= exp

(

ti − t

τ

)

. (15)

When integrated from xi to x and ti = 0 to t, the solution can be written in terms of θ as

θ2 − θ2e
θ2i − θ2e

= exp(−t/τ). (16)

E. ODE in r

We now return to Eq. (10) and write the ODE in terms of r. This will lead to the same differential equation in a
reduced variable x = (rf/r)6, with the same characteristic relaxation time τ as before. Using Eq. (4) to substitute
for θ, and Eq. (1b) to substitute for h gives

dr

dt
∝

γ

η

Ω3

r3

(

r−6
− r−6

f

)

. (17)

Now substituting x = (rf/r)6 gives

dx

dt
∝

γ

η

Ω3

r10f
(1− x) . (18)

In the limit as r → rf , x → 1, the DE can be approximated by

dx

dt
= −τ̃−1(1− x) (19)

where τ̃ = (k̃ηr10f )/(γΩ3), and k̃ is a global constant of proportionality. Using the relationships between r and θ
from Eq. (1b) and Eq. (2b), we can show that indeed τ = τ̃ and the two formulations of the differential equation are
equivalent.

II. EXPERIMENTAL RELAXATION MEASUREMENTS

If contact line dependent dissipation was the dominant energy dissipation mechanism, then according to Eq. (14)
we would expect τ ∝ Ω1/3. Plotting the experimental relaxation time as a function of Ω1/3 in Fig. S1, shows the data
is not consistent with a contact line dissipation. The lines of best fit do not pass through the origin, which suggests
an alternate scaling must be used.



4

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

Ω1/3 (µm)
τ

(m
in

u
te

s)

Tf = 180◦C, he = 46 nm
Tf = 180◦C, he = 59 nm
Tf = 190◦C, he = 59 nm
Tf = 190◦C, he = 46 nm
Tf = 190◦C, he = 59 nm

FIG. S1: The experimentally measured relaxation time τ plotted against the cube-root of the droplet volume Ω1/3. The lines
are best fit to Eq. (14) with an intercept τ0. The scaling law does not work for small droplets, which gives rise to a non-zero
intercept.

A scaling law of τ ∝ Ω2/3 better describes the data (Fig. S2), which suggests that a different dissipation mechanism
might be dominant. Comparing the intercept τ0 for both an Ω1/3 scaling and an Ω2/3 scaling, the intercept is smaller
for the Ω2/3 scaling as shown in Fig. S3. This highlights that the data is indeed consistent with an area-dependent
dissipation, and not a contact-line dissipation.
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FIG. S2: The relaxation time τ plotted against Ω2/3. The scaling law τ ∝ Ω2/3 better describes the small-droplet relaxation
as the intercept more closely passes through the origin.

−20

−10

0
τ ∝ Ω2/3

τ ∝ Ω1/3

τ 0
(m

in
u
te

s)

FIG. S3: The intercept τ0 from fits to the two different scaling laws in Fig. S1 and Fig. S2. The Ω2/3 scaling law fits have
significantly smaller intercepts, which show the data is more consistent with an area-dependent dissipation mechanism. The
colors used correspond to the legends in Fig. S1 and Fig. S2.

III. GENERAL FORM OF DISSIPATION

Suppose the power dissipation takes a more general form

P ∝ Krαθβ ṙ(t)2, (20)
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then making use of the driving force from Eq. (8b) and solving for the velocity at the contact line using P = F dr
dt we

get a general DE

dr

dt
∝

γ

K
r(1−α)θ−β(θ2 − θ2e). (21)

Casting in terms of only θ

dθ

dt
∝

γ

KΩα/3
θ(α/3−β+1)

(

θ2e − θ2
)

. (22)

Letting x = θ2/θ2e , leads to the differential equation

dx

dt
∝

γθ(α/3−β+2
e )

ηΩα/3
xα/6−β/2+1 (1− x) . (23)

In the limit as θ → θe, x → 1, the differential equation can be approximated to first order by

dx

dt
= −τ−1(1 − x), (24)

with

τ ∝
KΩα/3

γθ(α/3−β+2)
e

. (25)

This has solutions of an exponential relaxation in x with characteristic timescale τ

1− x

1− xi
= exp

(

ti − t

τ

)

. (26)

When integrated from xi to x and ti = 0 to t, the solution can be written in terms of θ as

θ2 − θ2e
θ2i − θ2e

= exp(−t/τ). (27)
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