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The buckling and twisting of slender, elastic fibers is a deep and well-studied field. A slender
elastic rod that is twisted with respect to a fixed end will spontaneously form a loop, or hockle,
to relieve the torsional stress that builds. Further twisting results in the formation of plectonemes
– a helical excursion in the fiber that extends with additional twisting. Here we use an idealized,
micron-scale experiment to investigate the energy stored, and subsequently released, by hockles and
plectonemes as they are pulled apart, in analogy with force spectroscopy studies of DNA and protein
folding. Hysteresis loops in the snapping and unsnapping inform the stored energy in the twisted
fiber structures.

INTRODUCTION

Take a cord, twist one end with respect to the other,
then relax the tension in the cord. We have all likely en-
countered the spontaneous looping and subsequent helix
that will form with additional twisting. Hockling, or the
buckling and looping of a twisted rod, is a well known
and intensely studied phenomenon [1–16]. When a cord
is twisted, a significant amount of elastic energy can be
stored in the twists of the fiber. By introducing slack
in the fiber, this stored energy can be released by un-
twisting, however, if the rotation at the ends of the cord
are fixed, untwisting is accompanied by bending into a
hockle or plectoneme (a double-helix structure terminat-
ing in a loop) since the ends are fixed. When this occurs,
hockling is preceded by a modified Euler buckling that
results in sinusoidal buckles, eventually coarsening into a
single loop [2–4].

Because hockling can result in damage to cables, de-
termining the criteria for hockling is of practical engi-
neering concern. Research has focused on experiments
using braided cables, nickel-titanium (nitinol) rods, and
plastic fibers with thicknesses ranging from millimeters
to centimeters [3, 4, 6, 10, 12, 13, 17–20]. However, per-
forming these experiments at such large scales leads to
complicating factors such as gravitational sagging, ma-
terial defects, and non-uniformity. Furthermore, few ex-
perimental studies have explored the removal of hock-
les [10, 12, 19, 21, 22]. Additionally, the choice of material
in these studies are often prone to plastic deformation at
low strains, limiting the study of hockle removal to small
degrees of twist.

Beyond hockling – the creation of the first loop – a
highly twisted rod may begin writhing, where the asso-
ciated rotation of the loop results in the formation of
a plectoneme [2, 3, 6, 9, 13, 18, 23–33]. While this is
less common in engineering applications, it occurs fre-
quently in biological systems like DNA and plant ten-
drils [23, 34–42]. However, it is difficult to study this
process in-vitro, and in the particular case of DNA, ther-

mal fluctuations may both initiate plectoneme formation
as well as introduce noise into any potential force mea-
surements [25, 26, 28, 43–48]. Gaining a deeper under-
standing of twisted fibers could help in developing bio-
inspired smart materials [9, 49, 50].

In this study, uniform, cylindrical, elastic fibers with
diameters on the order of∼ 10 µm are used to experimen-
tally investigate the hockling and writhing phenomena.
Much like force spectroscopy measurements carried out
with DNA and magnetic tweezers [44, 45], here on larger
length scales we employ a micro-pipette deflection tech-
nique [51, 52] to quantify the tension, twisting, and bend-
ing energies in the system as a fiber hockles, writhes, and
is pulled apart again. Extending the work of Ross and
Yabuta, we first derive exact, material-independent hock-
ling and hockle-removal criteria [12, 21]. The expression
derived is purely geometric with no fit parameters, and
accurately describes experiments performed with fibers
of various sizes. We then focus on the formation and re-
moval of plectonemes from a twisted fiber, with the latter
revealing an especially rich force response.

EXPERIMENT

A cylindrical, elastic fiber with a radius of ∼ 10 µm
is attached to two thin glass capillary pipettes acting as
posts. One glass post is mounted on a rotational step-
per motor (1.8◦ resolution) and linear actuator, allowing
precise control of tension, slack, and degree of twisting in
the fiber. The other post, a capillary that acts as a sen-
sitive force transducer, is capable of measuring the ten-
sion in the fiber directly. The force transducer pipette is
mounted perpendicular to the length of the fiber to facili-
tate force measurement. A schematic of the experimental
setup is shown in Figure 1a).

Both posts are made from glass capillary tubes with a
diameter of 1.0 mm (World Precision Instruments, USA).
The force transducer is made by pulling a capillary tube
with a pipette puller (Narishige, Japan) to be long (∼
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FIG. 1. a) A fiber with radius r and length L was glued to two
posts, a mobile post (left) and a force-transducer post (right).
The left post is rotated by an angle θ◦, and moved toward the
right post. b) As the posts move together, the fiber untwists
with the formation of a loop. c) Upon further decreasing the
distance a plectoneme forms. The process is then reversed
and the glass pipettes are separated. Tension in the fiber is
measured by observing the deflection d of the force-transducer
pipette and D >> d. d) Optical image sequence of a r ≈ 10
µm fiber during a typical experiment.

1 cm), thin (∼ 10 µm) enough to deflect when tension
was applied to the fiber. By calibrating this pipette,
its spring constant k (∼ 0.5 N/m) can be determined,
allowing for force measurements as small as hundreds of
pN by monitoring the deflection of the pipette d using
cross-correlation image analysis [51, 52].

The fibers used in this experiment were made from
Elastollan (Wacker Chemi AG), a commercially available
elastomer with Young’s modulus E = 11± 3 MPa which
was determined via extensional stress-strain tests per-
formed on several different fibers with r ≈ 10 µm (not
shown). Fibers were made by heating a pellet of Elas-
tollan to 240◦ C, dipping a glass pipette into the melt,
then rapidly pulling the pipette out of the melt. The
resulting fibers have uniform, cylindrical cross-sections
with a diameters of ∼ 10 µm. The fibers were inspected
optically for uniformity, then glued across the posts with
a dilute polystyrene-toluene solution. A droplet of the
solution was placed at the contact point between the
fiber and posts, and as the toluene evaporated, a layer of
glassy polystyrene was left which holds the fiber in place.
Toluene was selected as the solvent as it selectively dis-
solves polystyrene and not Elastollan.

In a typical experiment the fiber is rotated at one end
by an angle of θ◦ = 2πn corresponding to n full revolu-

tions [Fig. 1a)], while the fiber of length L, is held at an
initial tension such that the fiber remains straight and
unbuckled. The tension is then released by moving the
left post by a distance D and bringing the posts together
at a speed of 30 µm/s [Fig. 1b)]. Strictly, the slack in-
troduced into the fiber δ = D+ d, but since the distance
the post is moved is ∼ 103 times greater than the de-
flection of the force sensing pipette, we can take δ ≈ D.
As the slack is increased, the fiber is observed and found
to hockle and writhe as the elastic energy stored in the
twisted fiber is converted into bending energy [Fig. 1c)].
An optical image sequence of the fiber during a typical
experiment is shown in Fig. 1d). Since the fiber is radi-
ally symmetric, twisting in either direction is equivalent
and experiments are repeated with an initial twist of −θ◦
(note that θ◦ is defined as positive). Repeating the exper-
iment for θ◦ and −θ◦ compensates for any effects related
to errors in defining θ◦ = 0 or radial non-uniformities.
The deformations in the fiber as well as the deflection of
the force transducer are simultaneously measured with
optical microscopy.

RESULTS AND DISCUSSION

Formation and removal of a hockle

We consider the fiber as a slender rod with a large
length to width ratio. We follow the argument outlined
by Ross, which uses the results of Timoshenko and an
analysis of the relevant energies in the system, to derive
criteria for hockling related to the tension and torsion
within a twisted fiber [12, 53].
A twisted fiber will hockle and form a loop when the

torsional energy stored in the fiber is large enough to
overcome any stabilizing tension in the fiber. The bend-
ing energy within the resulting loop must be balanced by
the work released as as the ends of the fiber are brought
together and the fiber untwists. To form a single loop,
there are three energy contributions to consider: i) en-
ergy is required to bend the fiber into a loop; ∆Ub,
ii) work is released as the two ends holding the fiber
are brought closer, ∆WT; and iii) energy stored in the
twisted fiber is released, ∆WM, because upon formation
of a loop the fiber unwinds by one full rotation.
For the formation of a single loop, the bending energy

is calculated assuming the fiber undergoes a linear elastic
deformation into a perfect circle with radius R,

∆Ub =
EI

2R2
2πR =

πEI

R
, (1)

where E is Young’s modulus and I is the second area
moment of the cylindrical fiber, I = πr4/4. The work
done by bringing the two posts together is given by

∆WT = −T∆D, (2)
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where T is tension in the fiber, and ∆D is the change
in the distance between the posts needed to form a loop
(∆D is defined as positive when the pipettes are brought
together and negative as they are pulled apart). Lastly,
the work done via untwisting, ∆WM, is given by,

∆WM = 2πM, (3)

where M is the twisting moment of the fiber, and 2π is
the angle through which the fiber must unwind to form
a single loop. Within the linear elastic regime, M varies
linearly with the twist angle and is,

M =
JGθ◦
L

, (4)

where J is the torsional constant for a cylindrical fiber,
J = πr4/2 = 2I, and G is the shear modulus of the ma-
terial (note that this assumption remains valid for large
θ◦ provided L is also large). The balance between the
three energy contributions is then given by,

πEI

R
+ T∆D = 2πM. (5)

Equation 5 can be applied to the formation of a loop
as well as the removal of a loop, and each case will be
considered in turn.
In the experiment presented here, a twisted fiber is sta-

bilized against buckling by beginning in a state of tension.
As the ends of the fiber are brought together, T decreases
rapidly. For small values of θ◦, the tension T at the point
of hockling is minimal and we make the approximation
that T = 0. This allows for Equation 5 to be simplified:

M =
EI

2R
. (6)

From Equation 4 and Equation 6 we obtain,

JGθ◦
L

=
EI

2R
. (7)

Making the generous assumption that the fiber outside
the loop remains straight and all slack in the fiber goes
into forming a perfect circle, we can define the slack as
δ = 2πR. We note that the assumption of a circular loop
results in a small systematic error for small θ◦ which will
be discussed below. Equation 7 can then be written as,

δ =
πEI

JG

L

θ◦
. (8)

For a cylindrical fiber made from a material with a Pois-
son ratio of ν ≈ 0.5 (typical of elastomers), E = 2G(1+ν)
and J = 2I, the amount of slack required to form a hockle
is given by

δ

L
=

3π

2θ◦
. (9)

FIG. 2. Slack δ normalized by natural length L of fibers
with initial twist θ◦ at the point of hockling (circles, solid
line) and removal of the loop (squares, dashed line) and their
corresponding theoretical predictions. The data is the average
of 10 fibers with lengths varying from L = 6 mm to 300 mm
and radii varying from r = 10 µm to 1000 µm. Error bars are
calculated as the standard deviation of the data.

We see from this expression that the amount of slack
that needs to be provided in the fiber for loop formation
is independent of the material properties of the fiber, and
only dependent on geometry and how much the fiber is
twisted. This result is to be expected since the formation
of a hockle depends on equating the energy to form a
loop with the energy stored in the twisted fiber, both
of which depend on the modulus. In order to validate
this expression, the slack required for a hockle to form
for different values of θ◦ was measured for 10 fibers with
lengths varying from L = 6 mm to 300 mm and r =
10 µm to 1000 µm. The results are plotted in Figure 2
(circles). A systematic increase in δ/L for small values
of θ◦ can be seen, which is due to the assumption of a
perfectly circular loop and straight fiber outside the loop.
The assumption becomes increasingly valid at higher θ◦.

Having examined the formation of a hockle, we now
turn to the removal of a hockle as the two ends of the fiber
are pulled apart. If the ends of the fiber are pulled apart,
R decreases, and the bending energy ∆Ub increases, un-
til it becomes more energetically favorable to remove the
loop and re-twist the fiber. In this case, T is no longer
negligible and the work done in pulling apart the ends
corresponds to the increase in bending energy in the in-
creasingly small loop. The energy balance in Equation 5
then becomes M = EI/R. When compared to Equa-
tion 6, there is an extra factor of 2, which results in the
prediction of δ (and size of the loop) when a hockle is
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removed,

δ

L
=

3π

θ◦
. (10)

Again, there are no material parameters in the crite-
rion for the removal of a hockle, and the data are shown
in Figure 2 (squares). We note that, with the approx-
imation of a circular hockle, the formation of a hockle
requires twice as much slack in the fiber as does the re-
moval of a hockle (compare Equations 9 and 10). In other
words, the circumference of the loop which forms is twice
as large as the circumference of the loop when the loop
is removed. Since neither criteria depend on the mate-
rial properties of the fiber, Equations 9 and 10 are valid
for all uniform elastic rods with circular cross-sections
within the linear elastic regime. Effects like sagging due
to gravity which would affect large scale systems would
modify this model.

Plectoneme Growth and Removal

In the previous section we investigated the formation
and removal of hockles. After a hockle forms in a highly
twisted fiber, bringing the ends even closer together can
allow a double-helix structure – a “plectoneme” – to form
through a process called writhing. A plectoneme is shown
schematically in Figure 3 (see also video in the Supple-
mental Information). Similar to destabilizing a hockle via
tension, a plectoneme can also be destabilized, and this
has been done in a number of studies on DNA using opti-
cal and magnetic tweezers [44, 54–58]. In this section we
will investigate the growth and removal of plectonemes.

A plectoneme forms by exchanging the twist in the
fiber for loops, resulting in points of self-contact as the
fiber winds around itself. The “linking number”, Lk, is
defined as the sum of the “twist number” Tw and the
“writhe number” Wr, both of which are integers [59, 60].
Tw counts the number of complete 2π radians of twist in
the fiber, while Wr counts the number of self-contacts of
the plectoneme [2, 18, 27, 28, 46]. If both ends of the fiber
are unable to rotate, then Lk = Tw +Wr is a constant.
For example, a fiber with θ◦ = 8π of twist and no self-
contacts has Lk = Tw = 4, and Wr = 0. As expected,
we observed that as the ends of the fiber were brought
together, Tw decreased in steps of 1 with simultaneous
increases in Wr. When Wr = 1, we observe a hockle in
the fiber and when Wr > 1, a plectoneme is observed.

The results of a typical experiment are shown in Fig-
ure 4 where we plot T as a function of D (see movie at
https://youtu.be/iQzRZvDTtDk). The experiment pro-
ceeds as follows: a fiber is initially held under a small ten-
sion and twisted by θ◦. At this point, D = 0,Wr = 0, and
Lk = Tw = θ◦/2π. One post is then translated with the
motorized translation stage, increasing D (this sequence

W = 4

T = 0

r

w

W = 4

T = 0

r

w

W = 3

T = 1

r

w

a) b) c)

T

FIG. 3. Schematic of a plectoneme formed from a fiber with
an initial twist angle corresponding to four full rotations (θ◦ =
8π). a) The stable plectoneme has minimal tension, and all of
the energy stored in the twisted fiber is stored in the bends of
the plectoneme. Lk = 4, Tw = 0, and Wr = 4. b) The tension
is increased by separating the boundaries, and the bending
energy in the loop at the base of the plectoneme increases. c)
When the bending energy stored in the base loop is enough
to destabilize the base loop, the twist in the fiber increases
by one full rotation, and decrease the writhe number by 1:
Tw = 1, and Wr = 3.

is labelled as compression in the figure). Small varia-
tions in the tension are observed as a plectoneme forms
and Wr increases by forming self-contacts in a quantized
manner. The process is then reversed (labelled as exten-
sion in the figure). Remarkably, a rich tension response
emerges with much larger tension required to unwind a
plectoneme compared to the formation. We observe large
peaks in T , followed by sudden drops that are concurrent
with decreases in the writhe number: Wr → Wr−1. The
peaks increase in magnitude as Wr decreases, with the
highest peak corresponding to the final removal of the
hockle.

To understand the origin of the rich non-monotonic
changes in tension, we now investigate what happens
whenWr → Wr−1. Studies have found that a completely
frictionless plectoneme experiences increased bending
throughout the entire plectoneme structure [25, 26, 55].
Other studies, however, find that friction at fiber con-
tact points plays an important role when a plectoneme is
pulled apart [16, 61]. Our model is based on the impor-
tance of friction between fiber contacts for the discontin-
uous plectoneme unwinding. In the experiments shown,
we observe that typically the self-contact at the base of
the plectoneme slips, while the next self-contact sticks.
Thus, as the tension is increased, the increase in bending
is localized at the base of the plectoneme, and similar to
pulling apart a hockle, the rotation of the plectoneme is a
sudden event [see Fig. 3b) and c)]. While previous stud-
ies have sought to describe the bending energy contained
in the plectoneme [2, 3, 6, 9, 10, 13, 18, 36, 39], we seek to
understand this largely unreported phenomenon of dis-
continuous plectoneme unwinding: from the experiments
we observe that as tension is applied the plectoneme does



5

FIG. 4. T is measured in a twisted fiber with θ◦ = 12π,
L = 6 mm and r = 18 µm as its ends are brought together
(compression) and then reversed (extension). As the fiber
is compressed, small but distinct tension peaks are observed
corresponding to an increase in the writhe number, Wr, until
the tension vanishes within the resolution of the experiment.
During extension T and M are initially small, allowing the
plectoneme to unwind smoothly. After Wr decreases by 2,
peaks and valleys in the tension corresponding to a reduction
in Wr were observed (shaded area, numbered) and were de-
termined by noting the image frames where the plectoneme
begins rotating and where it stops rotating. Additional peaks
(in dashed circles) are the result of stick-slip events as the
fiber moved past itself that are not associated with a change
in Wr.

not continuously unravel, rather, there are sudden and
non-monotonic changes in the tension corresponding to
the quantized decrease in Wr [25, 31, 61].

The schematic shown in Fig. 3 illustrates loops in the
plectoneme. The size of these loops depend on the twist
number: if the energy stored in twists is high compared
to the energy required to bend the fiber, then tight loops
form; conversely, a low twist number results in a low
twisting moment, M , and open loops. In this study, M
is low, and the experiments are carried out in a regime
where loops form along the plectoneme. We find that
the non-monotonic changes in the tension are coincident
with the removal of a base loop. It is instructive to con-
sider the limiting case of a fiber dominated by a high
value of M with a plectoneme that is tightly wound as
shown schematically in Figure 5, where the dominance of
M means that we can ignore the contribution of bending
energy. In this case, if we imagine pulling the boundaries
apart then as the tension T increases, so does the twist
angle, θ, in the fiber. In fact, any unit of length increase
in the boundaries is directly proportional to an increase
in θ. Thus θ ∝ −∆D for separation of the boundaries
(note the negative sign is the result of defining compres-
sion as positive). Next, the work done by tension goes

FIG. 5. Schematic of a plectoneme formed from a fiber with
a high twist number and a correspondingly high twisting mo-
ment of the fiber M

into undoing the plectoneme and increasing the twisting
energy of the fiber which scales as θ2. We can then ap-
proximate −T∆D ∝ θ2, which results in a linear change
in the tension with separation of the boundaries like a
Hookean spring, T ∝ −∆D, for this continuum approach.
Indeed the data shown in Figure 4 is bound by a linear
envelope with the upper and lower boundaries in the ten-
sion corresponding to the transition from Wr to Wr − 1.
During the Wr → Wr − 1 transition, the tension

decreases suddenly from the initial value at the upper
bound, to the final value after the transition at the lower-
bound, Ti and Tf . We can understand this from the
change in energy immediately before and immediately
after the destabilization of the base-loop [see Fig. 3b)
and c)]. Prior to destabilization, the tension increases
and the work,

∫
T (D)dD, increases the energy stored in

bending at the base loop. A fraction of that bending en-
ergy is released when a loop is removed and a twist is
added to the fiber: Wr → Wr − 1 and Tw → Tw + 1,
resulting in a sudden decrease in the tension from Ti to
Tf . As the tension decreases, the distance between the
boundaries increases by some length roughly equal to the
slack created through the loss of the base-loop, l. Thus
we have (Tf − Ti)l ∼ Ub,f − Ub,i, where Ub,i and Ub,f

are the bending energies before and after the destabiliza-
tion of the base-loop. However, since the loss in bending
energy is transferred into twist energy, we can write

− (Tf − Ti)l ∼
JG

L
(θ2f − θ2i ) =

JG

L
[4π(θi + π)]. (11)

We see that finally we obtain a linear dependence on the
twist angle which bounds the maxima and minima in
the tension given by this expression. Furthermore we see
from Eq. 11, that Ti − Tf increases with the degree of
twist in the fiber, which is validated by the data since θ
increases in Figure 4 asD decreases. Making the assump-
tion, as in the continuum model above, that the variation
in θ is linear in D, since each loop of the plectoneme is
the same size, explains why the upper bound and lower
bound are also linear in D.
We noted above that the discontinuous change in the
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tension associated with the quantized nature of destabi-
lizing a plectoneme has been reported by few studies in
the literature, while the sudden drop in tension associ-
ated with destabilizing a hockle is well known [25, 31, 61].
We attribute our success in measuring this effect to the
small scale of our experiment. Since the magnitude of the
tension peaks are linearly dependent on the twist angle θ
(see Eq. 11), experiments for which θ◦ is small may not
exhibit large peaks until the final removal of a hockle.
However, to stay within the linear elastic regime, θ◦/L
must remain small. Because our fibers are exceedingly
slender, we are able to perform experiments with rela-
tively large θ◦ while still remaining in the linear elastic
regime. Finally, because our fibers are so small, sagging
due to gravity is eliminated, facilitating the study of plec-
toneme formation and unravelling.

CONCLUSION

We have extended the energy analysis of Ross and
Yabuta [12, 21] to predict the point at which the hockle is
formed and destabilized, and validated both criteria with
precise micron-scale experiments. The idealized system
was also used to explore the formation and removal of
plectonemes, observing multiple instabilities associated
with the change in number of self-contacts within the
plectoneme. The changes in tension observed with the
experiments are well described by a simple model.
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[28] I. M. Kulić, H. Mohrbach, R. Thaokar, and H. Schiessel.
Equation of state of looped DNA. Physical Review E,
75(1), January 2007.

[29] J. F. Marko and S. Neukirch. Global force-torque phase
diagram for the DNA double helix: Structural transi-
tions, triple points, and collapsed plectonemes. Physical

Review E, 88(6), December 2013.
[30] M.L. Smith and T.J. Healey. Predicting the onset of

DNA supercoiling using a non-linear hemitropic elastic
rod. International Journal of Non-Linear Mechanics,
43(10):1020–1028, December 2008.

[31] B. C. Daniels, S. Forth, M. Y. Sheinin, M. D. Wang, and
J. P. Sethna. Discontinuities at the DNA supercoiling
transition. Physical Review E, 80(4), October 2009.

[32] M. Chamekh, S. Mani-Aouadi, and M. Moakher. Sta-
bility of elastic rods with self-contact. Computer Meth-

ods in Applied Mechanics and Engineering, 279:227–246,
September 2014.

[33] H. Brutzer, N. Luzzietti, D. Klaue, and R. Seidel. Ener-
getics at the DNA Supercoiling Transition. Biophysical

Journal, 98(7):1267–1276, April 2010.
[34] J. L. Silverberg, R. D. Noar, M. S. Packer, M. J. Har-

rison, C. L. Henley, I. Cohen, and S. J. Gerbode. 3D
imaging and mechanical modeling of helical buckling in
Medicago truncatula plant roots. Proceedings of the Na-

tional Academy of Sciences, 109(42):16794–16799, 2012.
[35] S. J. Gerbode, J. R. Puzey, A. G. McCormick, and L. Ma-

hadevan. How the Cucumber Tendril Coils and Over-
winds. Science, 337(6098):1087–1091, August 2012.

[36] F. Tanaka and H. Takahashi. Elastic theory of su-
percoiled DNA. The Journal of Chemical Physics,
83(11):6017–6026, December 1985.

[37] B. D. Coleman, I. Tobias, and D. Swigon. Theory of
the influence of end conditions on self-contact in DNA
loops. The Journal of Chemical Physics, 103(20):9101–
9109, November 1995.

[38] K. A. Hoffman, R. S. Manning, and J. H. Maddocks.
Link, twist, energy, and the stability of DNA minicir-
cles. Biopolymers: Original Research on Biomolecules,
70(2):145–157, 2003.

[39] E. L. Starostin. Three-dimensional shapes of looped
DNA. Meccanica, 31(3):235–271, 1996.

[40] M. M. Gromiha, M. G. Munteanu, A. Gabrielian, and
S. Pongor. Anisotropic elastic bending models of DNA.
Journal of Biological Physics, 22(4):227–243, 1996.

[41] A. G. Cherstvy. Looping charged elastic rods: applica-
tions to protein-induced DNA loop formation. European

Biophysics Journal, 40(1):69–80, January 2011.
[42] I. V. Dobrovolskaia, M. Kenward, and G. Arya. Twist

Propagation in Dinucleosome Arrays. Biophysical Jour-

nal, 99(10):3355–3364, November 2010.
[43] S. Goyal, N.C. Perkins, and C.L. Lee. Nonlinear dynam-

ics and loop formation in Kirchhoff rods with implica-
tions to the mechanics of DNA and cables. Journal of

Computational Physics, 209(1):371–389, October 2005.
[44] J. Lipfert, J. W. J. Kerssemakers, T. Jager, and N. H.

Dekker. Magnetic torque tweezers: measuring torsional

stiffness in DNA and RecA-DNA filaments. Nature Meth-

ods, 7(12):977–980, December 2010.
[45] F. Mosconi, J. F. Allemand, D. Bensimon, and V. Cro-

quette. Measurement of the Torque on a Single Stretched
and Twisted DNA Using Magnetic Tweezers. Physical

Review Letters, 102(7), February 2009.
[46] J. F. Marko and E. D. Siggia. Statistical mechanics of

supercoiled DNA. Physical Review E, 52(3):2912, 1995.
[47] D. M. Stump, W. B. Fraser, and K. E. Gates. The

writhing of circular cross–section rods: undersea cables
to DNA supercoils. Proceedings of the Royal Society of

London. Series A: Mathematical, Physical and Engineer-

ing Sciences, 454(1976):2123–2156, 1998.
[48] M. Ganji, S. H. Kim, J. van der Torre, E. Abbondanzieri,

and C. Dekker. Intercalation-Based Single-Molecule Flu-
orescence Assay To Study DNA Supercoil Dynamics.
Nano Letters, 16(7):4699–4707, July 2016.

[49] A. R. Studart and R. M. Erb. Bioinspired materials that
self-shape through programmed microstructures. Soft

Matter, 10(9):1284–1294, 2014.
[50] N. Hu and R. Burgueño. Buckling-induced smart appli-

cations: recent advances and trends. Smart Materials

and Structures, 24(6):063001, June 2015.
[51] M. J. Colbert, A. N. Raegen, C. Fradin, and K. Dalnoki-

Veress. Adhesion and membrane tension of single vesi-
cles and living cells using a micropipette-based technique.
The European Physical Journal E, 30(2):117, Sep 2009.
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