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Abstract. In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace
pressure of the droplet deforms the free-standing film, creating a bulge. The film’s tension is modulated by
changing temperature continuously from well below the glass transition into the melt state of the film. The
contact angle of the liquid droplet with the planar film as well as the angle of the bulge with the film are
measured and found to be consistent with the contact angles predicted by a force balance at the contact
line.

1 Introduction

Elastocapillarity, the interplay between surface tension and
elasticity, is of fundamental importance in many areas of
research including microfluidics [1], self-assembly [2,3,4,5,
6], substrate patterning [7,8,9], wetting of fibers [10,11,12,
13,14], and biological systems [15,16,17]. One of the sim-
plest geometries – the contact angle a liquid drop makes
with a soft solid – has garnered a great deal of inter-
est [7,18,19,20,21,22,23,24,25,26,27,28]. In contrast to
a droplet on a soft solid, the case of partial wetting of a
liquid on a hard solid or a liquid on a liquid are well under-
stood [29]. A liquid droplet supported by an undeformable
solid substrate will exhibit a contact angle, θy, which can
be calculated by performing a horizontal surface tension
balance. This expression, which is known as Young’s equa-
tion, is given by: γ cos θy = γsv − γsl, where γ is the sur-
face tension of the liquid, γsv is the solid/vapor interfacial
tension, and γsl is the solid/liquid interfacial tension [29,
30]. On a liquid substrate, the Laplace pressure of the
droplet is able to deform the underlying liquid: for small
droplets, where capillarity dominates gravity, a liquid lens
is formed where the product of the curvature and the inter-
facial tension of both interfaces are equal (i.e. a Laplace
pressure balance). Furthermore, at the contact line, the
construction of a Neumann triangle in which the vertical
and horizontal components of the surface tensions are si-
multaneously balanced allows one to determine the angles
between the three interfaces [29]. In the intermediate case
in which substrates are soft, the droplet deforms the sub-
strate at the contact line into a cusp with a length scale
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comparable to the elastocapillary length for bulk deforma-
tion γ/E where E is the elastic modulus [7,19,22,23,24,
31]. Microscopically, the contact angle between drop and
substrate cusp satisfy a Neumann construction balancing
the surface tension of the liquid and surface stresses be-
tween solid-liquid and solid-vapor interfaces. Macroscop-
ically, the contact angle a drop larger than γ/E makes
with the planar, undeformed film satisfies Young’s equa-
tion [18,20,21,28]. However, for drops smaller than γ/E,
these contact angles deviate from Young’s equation [21,
22].

In order to observe micrometer-scale elastocapillary
deformations in the substrate, experiments are limited to
soft materials with E in the kPa range such that the elas-
tocapillary lengths are on the order of a few µm. An alter-
nate approach is to utilize stiff materials in a compliant
geometry, such as a thin free-standing film. In this geom-
etry, bending of the thin membrane is of negligible cost in
comparison to stretching, which permits macroscopic de-
formation of the film, while maintaining a sub-nanometer
bulk elastocapillary length [6,25,26,27,32,33,34].

In this paper we consider the contact angles between
liquid drops on thin, glassy free-standing films (E ∼ GPa)
as a function of film tension. The tension is modulated
by the thickness and temperature of the films, and the
contact angles are measured continuously from well below
the glass transition (Tg) of the film, into the melt state.
We find that a Neumann construction accurately predicts
the contact angle made between drops and the film.
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2 Experiment

Polystyrene (PS) with number averaged molecular weight,
Mn = 451, 000 kg/mol, and polydispersity index of 1.10
(Polymer Source Inc.), was dissolved in toluene (Fisher
Scientific, Optima grade) and spin cast onto freshly cleaved
mica sheets (Ted Pella Inc.). The resulting films ranged in
thickness, h, from 45 nm to 110 nm and were vacuum an-
nealed for a minimum of 12 hours at 130 ◦C to remove
residual solvent and relax the polymer chains. After cool-
ing to room temperature, films were cut with a scalpel
blade into several smaller films and floated onto the sur-
face of an ultra-pure water bath (18.2 MΩ·cm). The float-
ing films were subsequently transferred to 1 cm × 1 cm
steel washers with a 3 mm diameter circular hole result-
ing in free-standing films. Additionally, one film from each
sample was transferred to a silicon wafer for thickness
measurements using ellipsometry (Accurion, EP3).

The samples were placed in the experimental set-up
shown schematically in figure 1a and pre-annealed above
the glass transition at 102 ◦C for 2 minutes. This proce-
dure relaxes any mechanical tension in the film, removes
wrinkles which may have formed from transferring the
film onto the washer, and ensures adhesion between the
film and the steel washer. After the temperature increases
above the glass transition temperature, the film can flow to
relax any pre-stress. Thus, at this point, wrinkles quickly
relax and the film becomes a flat, stress-free liquid film.
We ensure that due to the high viscosity at the annealing
temperature no holes have formed in the liquid film which
is inherently unstable to hole formation. In this melt state,
the liquid film acquires a tension that is simply due to
the surface tension of the two free interfaces. The sample
was subsequently quenched into the glassy state to 65 ◦C
resulting in a taut film with uniform tension. Based on
the thickness of the films and the speed of quench into
the glassy state, we do not expect to observe any con-
finement effects [35]. Two glycerol (Caledon Laboratories
Ltd.) drops, with volumes approximately 100 pL, were de-
posited on either side of the films as shown in figure 1a.
In this way, both the drop on the top side and the defor-
mation in the film, due to the drop on the bottom side,
could be imaged simultaneously from the side using an
optical microscope. The Laplace pressure of the drop de-
forms the film, we refer to this deformed region of the
film as the bulge. The size of drops deposited were limited
to contact radii between 25-100 µm, covering a combined
contact area < 5% of the film. Therefore, the deformation
induced in the film by the droplets is perturbative to the
overall size of the film. The lower limit in droplet size was
imposed to reduce the effects of evaporation of the drop,
while the upper limit assures that the additional stretch-
ing of the film is a perturbation to the tension. Lastly, all
droplets were much smaller than the capillary length of
glycerol so that gravity can be ignored.

The temperature of the hot plate was increased in 5 ◦C
increments up to 95 ◦C at a rate of 90 ◦C / min., remain-
ing at each temperature for 5 minutes to allow the drops
to reach an equilibrium contact angle before images were
captured with a camera (QIMAGE QICAM Fast1394) at-
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Fig. 1. a) Schematic of the side-view of glycerol drops on ei-
ther side of a film between two temperature-controlled plates
(not to scale). b) Microscope image of a drop (top) and bulge
(bottom) with spherical cap fits (red curves). The contact di-
ameters (2rc) are indicated with dashed lines. Below these lines
is the reflection of the bulge/droplet by the film itself. The scale
bar corresponds to 25 µm c) Neumann construction account-
ing for interfacial and mechanical tension acting at the contact
line. The interior angle α is the sum of θb and θd.

tached to a horizontally mounted microscope objective.
The sample is illuminated from behind. Since the sample
is not in direct contact with the hot plates, a thermo-
couple (OMEGA HH506RA) was used to determine the
actual temperature at the location of the sample. For mea-
surements above 95 ◦C, the temperature was increased di-
rectly to the desired temperature at a rate of 90 ◦C/min,
at which point images were captured at 15 second inter-
vals, and contact angles were reported once they reached
a constant value.

The contact radius (rc) was measured directly from the
microscope images, and the profiles were fit to spherical
caps. Examples are shown in figure 1b. From these fits,
the radius of curvature of the drop and bulge (Rd and
Rb) were determined. The contact angle subtended by the
spherical caps and the undeformed film away from the
droplet (θd, θb) could be determined through the relation,
sin(θd,b) = rc/Rd,b, where the subscript d or b refers to
either the droplet or bulge.

3 Results and Discussion

3.1 Determining Tension

It has been shown previously that the tension in the film
can be determined by constructing a Neumann triangle at
the contact line which includes both interfacial tensions
and mechanical tension within the film [25,27,34,36]. Fig-
ure 1c is a schematic of the tensions acting at the contact
line. By balancing these tensions in the vertical direction,
an expression relating θd and θb to the tension in the film
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can be found:

sin θd
sin θb

=
Γmech + γsv + γsl

γ
, (1)

where Γmech is the mechanical tension within the film. Re-
cently there has been significant interest in the difference
between surface tension and surface stresses in soft solids
[37,38,39,40].Specifically, if the surface energy of the solid
is strain-dependent, the surface stress is not equal to the
surface energy. Since the strain-dependence of the surface
energy of polymeric glasses has not yet been character-
ized, we make the simplifying assumption that the surface
stresses equal the surface energies. In practice, it is not an
important assumption because the mechanical tensions in
the film are the dominant contribution to the total film
tension. In addition, since our films are subject to very
small strains (<1%), the surface energies are not expected
to deviate significantly from the unstrained values.

We note that rather than using the macroscopic con-
tact angles, one can equivalently state that equilibrium
requires that the Laplace pressure of the drop must bal-
ance that of the bulge:

γ

Rd
=
Γmech + γsv + γsl

Rb
. (2)

By using the relation sin θd,b = rc/Rd,b and the Laplace
pressure balance one recovers equation (1).

Equations (1) and (2) show that by measuring the drop
and bulge contact angles, or their radii of curvature, the
total tension in the film (mechanical and interfacial) nor-
malized by the surface tension of the liquid can be de-
termined. This treatment relies on the assumption that
the pretension of the membrane is unchanged by the ad-
dition of droplets when the deformation of the membrane
induced by the droplet is a perturbation to the total area
of the film. Additionally, because the drop is not pinned
at the contact line, we assume the mechanical tension is
uniform across the contact line.

The assumption that the presence of small droplets re-
sults in a perturbative change to the tension of the mem-
brane is in congruence with our observation that the mea-
sured tension does not change as additional droplets are
placed on the film. Furthermore, because the bulge takes
on the shape of a spherical cap we can assume the tension
throughout the film below the drop is uniform. The ac-
curacy of this technique has been confirmed elsewhere by
comparison with micropipette deflection techniques [27].

By measuring the tension in films of various thick-
nesses at different temperatures, we can compare the mea-
sured values of the tension, to that predicted by using the
material thermal expansion. In addition, we can further
our understanding of the relationship between the droplet
and bulge contact angles and the tension in the film.

Guided by equation (1) we plot the experimental ob-
servable quantity sin θd/ sin θb as a function of tempera-
ture for various film thicknesses in figure 2. We recognize
this ratio as being equivalent to the normalized tension
of the membrane in contact with the droplet which in-
cludes the mechanical tension of the membrane and the

Fig. 2. The ratio sin θd/ sin θb as a function of temperature for
various PS film thicknesses. This ratio is equivalent to the ten-
sion of the membrane in contact with the droplet normalized
by the surface tension of glycerol as given in eq. (1).

relevant interfacial tensions [eq. (1)]. As seen in fig. 2, the
normalized tension decreases with increasing temperature
and increases as the film thickness increases. These trends
are explained next.

The decrease in the normalized tension is due in part
to a small change in the interfacial tensions with tem-
perature, but dominated by a reduction in the mechani-
cal tension of the membrane with increasing temperature.
The changes in the mechanical tension as a function of
temperature are caused by the difference in the thermal
expansion of the PS films and the steel washer to which
the film is affixed. The change in mechanical tension can
be understood as follows. First, the film is taken above the
glass transition temperature into the melt state to equili-
brate. The tension in the film is then only due to the sur-
face tension of the two free interfaces. As the film is cooled
below the glass transition, both the glassy PS and the steel
washer contract, however since the expansion coefficient of
PS is greater than that of stainless steel, the cooling results
in a uniform strain ε which increases with decreasing tem-
perature. The strain is given by ε = (cPS−cSS)∆T where
cPS = 70 · 10−6 K−1 is the linear expansion coefficient of
PS and cSS is the linear expansion coefficient of stainless
steel and depends on the alloy composition but is typi-
cally within the range (14 ± 3) · 10−6 K−1 [41,42]. Lastly,
the dependence on the film thickness in figure 2 is easily
understood from the fact that the mechanical tension in
the membrane is proportional to the film thickness: while
the strain due to differential thermal expansion is inde-
pendent of the film thickness, the tension depends on the
product of the strain and film thickness.

In order to fully probe the mechanical tension, Γmech,
as a function of temperature, we can also take into account
the variations in the interfacial tensions with temperature,
γ, γsv, and γsl; in addition to the dominant dependence of
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Fig. 3. Cosine of experimentally determined Young’s angle of
glycerol droplets on a PS substrate as a function of tempera-
ture. The solid black line, cos θy = aT + b, is a best fit to the
data. Parameters a and b are given in the text.

the film tension on thickness and the differential thermal
expansion discussed above. While γ(T ) and γsv(T ) can
be found in the literature, the interfacial tension for PS
and glycerol can be found though Young’s equation, γsl =
γsv − γ cos θy. Using eq. (1) and the Young’s equation, we
can write the mechanical tension in terms of accessible
quantities as:

Γmech =
sin θd
sin θb

γ − 2γsv + γ cos θy, (3)

where we stress that all quantities are dependent on tem-
perature. The surface tension of glycerol is γ = 63 −
0.0598(T − 20◦C) mN/m [43] and for PS, γsv = 40.7 −
0.072(T − 20◦C) mN/m [44]. We have measured the tem-
perature dependence of Young’s angle θy for glycerol atop
a non-compliant film of PS supported on a rigid substrate
(Si) as shown in fig. 3. The data for θy(T ) are well de-
scribed by the linear approximation cos θy = aT+b, where
a = (0.27 ± 0.04) · 10−2 ◦C−1 and b = (17 ± 5) · 10−2. Thus,
we can write the mechanical tension as,

Γmech(T ) = γ(T )

(
sin θd
sin θb

∣∣∣∣
T

+ aT + b

)
− 2γsv(T ), (4)

where all temperature dependencies are explicitly indi-
cated.

For an elastic membrane subjected to a radial strain,
the mechanical tension is equal to Γmech = σh = εhE/(1−
ν), where σ is the uniform stress within the film and ν is
the Poisson ratio (ν = 0.33 for PS [41]). Normalizing
Γmech by film thickness should thus collapse our data to a
single line. By using equation (4), the data from fig. 2 can
be plotted as Γmech/h as a function of temperature, and

Fig. 4. Mechanical tension within the film normalized by h.
A straight line with an x-intercept of 97◦C is fit to the data.

the data for various film thicknesses are shown to collapse
to one line as shown in figure 4 consistent with the theory.
As explained above, the mechanical tension vanishes in the
melt state; thus, we fit a straight line to the data below
97◦C constrained to pass through the point Γmech/h = 0
at T = Tg = 97◦ C, which is the glass transition of PS [41].
The equation of this fit line is given by Γmech/h = (97◦C−
T )(2.8 ± 0.1) · 105 N◦C−1 m−2. Comparing the fit line in
fig. 4 to Γmech = εhE/(1 − ν) we can solve for E using
the values for cPS , cSS , and ν given above, along with
the single fitting parameter from figure 4 to determine
the modulus of PS. We determine E for our PS film to
be 3.4 ± 0.4 GPa, which is in agreement with literature
values [41].

As an aside, we note that in a recent study, taut free-
standing films of glassy poly (n-butyl methacrylate) films
were prepared in a similar way and the tension was there-
after determined roughly 15◦C below its Tg using the
same technique [27]. For films with h ∼ 100 nm, it was
found that Γin/γ ∼ 3 using glycerol as the test liquid. Us-
ing the arguments developed here, along with values for
the Young’s modulus, Poisson ratio, and thermal expan-
sion coefficient of poly (n-butyl methacrylate), we expect
Γmech/γ ∼ 3 - consistent with the former study [45,46].

Above, Tg, the mechanical tension vanishes and the
only contribution to the tension stems from interfacial
tensions, which change slowly with temperature in com-
parison to Γmech. These considerations are in complete
agreement with the data above Tg in figures 2 and 4.

3.2 Contact Angle and Tension

Considering the Neumann construction in figure 1c, we
can group the tensions acting in parallel directions at the
contact line: in contact with the droplet, inwards, we have
Γin = Γmech + γsv + γsl; and away from the droplet in
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the plane of the film, Γout = Γmech + 2γsv [27]. Using the
cosine law to perform the tension balance at the contact
line, we obtain expression for both θd and θb:

cos θd =
(Γout/γ)2 + 1 − (Γin/γ)2

2Γout/γ
, (5a)

cos θb =
(Γout/γ)2 − 1 + (Γin/γ)2

2ΓoutΓin/γ2
. (5b)

With Young’s equation one can show that Γout = Γin +
γ cos θy. Substituting this expression into equations (5a)
and (5b), with the known dependence of cos θy on tem-
perature (fig. 3) and the known relationship between tem-
perature and Γin/γ for a given film thickness (fig. 2), we
can predict θd and θb as a function of Γin/γ and θy for the
liquid-solid pair. In figure 5 we plot the experimentally
obtained angles θd and θb as a function of Γin/γ obtained
using eq. (1) for a single film thickness. Also shown is the
prediction of eq. (5a) and (5b), represented by solid and
dashed lines. The grey region accounts for the uncertainty
in cos θy determined from figure 3.

We now draw attention to the points in figure 5 with
Γin/γ = 0.69. This is a unique set of points because here
we observe θb > θd for the first time. For these data,
T = 101 ◦C which is above the Tg of PS, meaning the
measurements were made while the film was in a liquid
state. Therefore Γmech = 0 at this point, resulting in
Γin/γ = (γsl +γsv)/γ. We can calculate Γin/γ at this tem-
perature using γsl, γsv, and γ from the previous section,
and doing so obtain a value of Γin/γ = 0.7 ± 0.1 which is
in agreement with our experimental value.

4 Conclusions

In this work, thin glassy films were deformed by the La-
place pressure of sessile liquid drops. The contact angles
made by the droplets and corresponding deformations with
the undeformed film were measured as tension was varied
by tuning film thickness and temperature. Through a Neu-
mann construction at the contact line, it was found that
the contact angle of the droplet and bulge could be pre-
dicted as a function of temperature and film thickness. We
are able to predict the measured tensions, and by compar-
ing to our data to theoretical considerations, the Young’s
modulus of PS could be obtained. The modulus was found
to be in excellent agreement with literature validating the
measurements and theory. Furthermore, we show that as
the film is raised above the glass transition, the mechani-
cal stress in the film vanishes, and we enter the regime of
partial wetting of a liquid on a liquid substrate.

The financial support by NSERC of Canada is gratefully ac-
knowledged. The authors thank René Ledesma-Alonso, Thomas
Salez and Elie Raphaël for valuable discussions.
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