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Preface
This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Oslo. The research pre-
sented here was conducted at the University of Oslo and at the University
of Bordeaux, under the supervision of Professor Andreas Carlson, Associate
Professor Thomas Salez, Dr. Tak Shing Chan and Professor Kent-Andre Mardal.

The thesis is a collection of six articles, presented in practical order. The main
theme of these articles is the mathematical modelling of interface dynamics
in small scale systems. The articles are preceded by six chapters that provide
relevant background information, motivation for the work and a perspective on
future directions.

Christian Pedersen
Oslo, September 2021
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Chapter 1

Introduction

Thin viscous films have been of great interest to mankind for centuries with a
notable early application related to the invention of the wheel and axle and its
need for lubricating films [1]. Although frequently used in everyday applications,
it was not until the experiments of Tower [2] and the subsequent analytical
treatment by Reynolds [3] in 1886 that an understanding of the dynamic
properties of thin films arose. Its ability to reduce friction forces between moving
objects and to reduce wear on a supporting substrate has made thin films
indispensable in modern industrial applications through lubrication, coating and
paints [4, 5, 6] and more recently in semiconductors [7] and soft robotics [8].
Although our understanding of thin film dynamics is historically rather new,
Nature is notoriously known to exploit the properties of thin films. Notable
examples being water harvest through capillary rise [9] and the formation of
laccoliths from magmatic intrusion in the earths crust [10, 11]. Also in human
biology we find thin films that serve many purposes through lubrication of joints
by articular cartilage [12], peristaltic flow in arteries [13] and around the brain
[14] and for cleaning purposes such as the lacrimal fluid that covers the human
eye [15]. See figure 1.1 for examples.

At the core of thin film dynamics lies the coupling between the viscous
forces in the fluid and the forces acting on its interfaces. A general theoretical
description of thin film dynamics can therefore be found by solving the Navier-
Stokes equations in the bulk using boundary conditions at the film interfaces. A
solution to a given problem can then be found by direct numerical simulations
[16]. However, a characteristic feature of thin film systems is that they have one
length scale that is significantly smaller than the others, thereof the name thin
film. By utilizing this scale separation we can find a leading order theoretical
description of the film dynamics within the framework of lubrication theory
[4, 6, 17, 18]. By combining the leading order velocity profile solution with
conservation of mass, this approximation yields a scalar evolution equation for
the spatiotemporal evolution of the film thickness which is more amenable to
traditional mathematical analysis. A particular type of thin film problems to
which lubrication theory has been successfully applied is the one of spreading
of a viscous fluid on top of a solid substrate. For a completely wetting fluid
[19] at scales below the capillary length [17] this process is driven by surface
tension forces acting on the film interface that wants to minimize the systems free
energy. This is achieved by reducing the curvature of the film profile by levelling
any perturbations into a flat film of homogenous thickness. An emblematic
example of this is the capillary spreading of a viscous droplet on a flat rigid
substrate. From the Young-Laplace law we know that surface tension forces
make the droplet adopt the shape of a spherical cap before reaching its final flat
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1. Introduction

Figure 1.1: Examples of thin films found in Nature and industry. (a) Schematic
of how magmatic intrusion in the earths crust bends the crust like an elastic
plate and spreads underneath it. (b) Contour plot of the surface elevation after
the formation of a laccolith due to magmatic intrusion. Figures (a)-(b) are
adapted form [11] which is licenced under CC BY 4.0. (c) Locomotion in soft
robotics is driven by pressurized fluid flow in thin interior channels inside the
robot. The figure show how the robot can move in four steps. Figure adapted
from [8] © 2020 IEEE.

equilibrium profile, when it is smaller than the capillary length. Experimental
observations show that the radius of the spherical cap increases in time with
a power-law behaviour as the droplet spreads out on the substrate [20, 21,
22]. This power-law behaviour and its exponent was found in an analysis of
the thin film equation and are known as Tanner’s law. This spreading law is
valid for any capillary-driven spreading droplets that wets a substrate due to
the existence of a thin pre-wetted layer that spreads out ahead of the droplet
caused by the molecular interactions between the liquid and the solid substrate
[19]. This pre-wetted layer offers an explanation to how a droplet spreading
can overcome the diverging viscous stress at the contact line [20] and it is thus
an important feature when modelling droplet spreading. Further experiments
on droplet spreading highlighted the effect of the thickness of the pre-wetted
layer on the spreading dynamics [23, 24]. The spreading dynamics transitions
from the nonlinear Tanner’s regime into a linear spreading regime as the ratio
between the droplet height and the pre-wetted layer thickness decreases.

When capillary levelling is studied at the nanoscale, experiments are often
performed using fluids of complex rheology such as polystyrene due to its
favourable material properties such as a low glass transition temperature,
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TG ≈ 100◦C [25]. Thin polymer films can then be prepared with pre-existing
gradients in the interface curvature that lead to capillary driven flow when the
film is heated above the glass transition temperature. Such pre-manufactured
films are important tools when studying interface dynamics and the rheological
properties of polymer films close to the glass transition [26, 27]. Moreover, the
pre-manufacturing of surface patterns in thin films has enabled studies of many
capillary flow problems that can be encountered in engineering processes such as
nanopatterning [28], viscous filling of holes [29, 30] and step relaxation [31].

An elastohydrodynamic analogue to the capillary-driven droplet spreading
is the spreading of a viscous fluid under an elastic plate that rests on a thin
pre-wetted film [32]. When injecting additional fluid underneath the elastic plate,
the spreading liquid peels the elastic plate from the pre-wetted film and causes
it to bend and stretch. The coupling between the elastic interface stress and the
viscous stress in the fluid bulk is given by the Föppel–von-Kármán equations [33].
Notoriously difficult to solve, these equations are therefore often simplified and
the two stress contributions are considered separately [34] or with assumptions
of isotropic in-plane compression [35]. However, there are recent studies that
utilize the full model equations in order to study instabilities in blistering [36]
such as elastic fingering in soft walled channels [37, 38, 39], see figure 1.2e-f.
Under the assumption of small plate deflections the Föppel–von-Kármán plate
equations are reduced to a linear bending contribution in the hydrodynamic
pressure. The elastohydrodynamic analogue to Tanner’s law for the spreading of
the viscous liquid is in this limit found by an asymptotic matching procedure of
the quasi-static bulk profile and a traveling wave solution at the peeling front
[40].

Another important aspect to consider in elastohydrodynamic flow is the
one of boundary conditions. A simplified one-dimensional study using isotropic
in-plane tension demonstrated that spatial confinement of the elastic plate can
lead to the formation of wrinkles [35]. In this scenario the wrinkle wavelength
grows as a power-law with a logarithmic contribution in time until bending
effects dominate the dynamics and the plate buckles. There are however reasons
to assume that localized compression will effect the dynamics as shown for
morphogenesis of biological materials [41].

A crucial aspect of thin films is the stability. The stability of a flat free
surface thin film of uniform thickness is maintained by the capillary force that
minimizes the surface area of the film, thus flattening any perturbation to the
film interface. Additional mechanisms are needed to destabilize the film which
can rupture by attractive van der Waals forces [42] where the interface dynamics
at the point of rupture has been studied in great detail [43, 44]. By combining
the effects of surface tension and van der Waals forces into a one-dimensional thin
film equation, an analysis of its numerical solution found that the film thickness
at the point of rupture behaves with a power law in time [45]. Further studies
extended the theoretical models to axisymmetric coordinates where similarity
solutions were found by an asymptotic-matching procedure, assuming a quasi-
static far-field solution to the thin film profile [46, 47]. Instabilities in thin films
can also lead to droplet formation [48]. This is visualized in figure 1.2a where
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1. Introduction

Figure 1.2: (a)-(b) Kymographic representation of the height of a thin viscous
film during a de-wetting process with the y-axis representing time. Surface
instabilities grow in time and lead to film rupture and the formation of droplets.
(a) Deterministic de-wetting driven by van der Waals forces. After the film has
ruptured, all droplets have similar size. (b) Stochastic de-wetting driven by
van der Waals forces and accelerated by thermal fluctuations. The de-wetting
process if much faster and the generated droplets have varying sizes. Reprinted
with permission from [52] © 2015 by the American Physical Society. (c)-(d) A
viscous droplet spreading on top of a thin viscous film. (c) The spreading is
driven by surface tension forces which gives a smooth droplet profile. (d) The
droplet spreading are influenced by thermal fluctuations to which the spreading
rate is accelerated. Reprinted with permission from [53] © 2005 by the American
Physical Society. (e)-(f) A lubricated elastic membrane delaminates from its
supporting substrate by injecting air from underneath. (e) The flux of air that
is injected is small and the spreading process is smooth. (f) When the flux of
injected air is increased, fingering patterns emerge in the delamination process.
Reprinted with permission from [37] © 2012 by the American Physical Society.

we see an unstable thin film that breaks up into a distribution of droplets. The
rupture dynamics of thin films has also been studied for elastohydrodynamic
flows [49].

Beyond the deterministic effects discussed so far there are other forces that
come into play when we consider systems at the nanoscale. At these length
scales thermal fluctuations can cause perturbations to a thin film that can grow
in time subsequently leading to film rupture. A phenomenological model of
fluctuating hydrodynamics was introduced by Landau and Lifshitz [50] by
adding a stochastic stress to the flow momentum equation, which can be derived
from the Boltzmann equation [51]. Thermal fluctuations can accelerate the
de-wetting process by enhancing the perturbation of a thin film [54, 55]. Linear
approximation of the thin film equation shows that thermal fluctuations can
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change the capillary wave spectrum of the film perturbations from showing
exponential decay in time to a power law [56]. As the fluctuations are random
this can have great effects on the distribution of droplets during spinodal de-
wetting [52, 57] as illustrated in figure 1.2b. One way to stabilize the instabilites
caused by fluctuations is to impose a shear flow at the film interface. This has
been studied for confined flows with a liquid-liquid interface where a Couette
flow is imposed. Analytical analysis and Brownian dynamics simulations show
that shear can stabilize film perturbations [58, 59].

Morover, thermal fluctuations have been studied in the context of droplet
spreading [53, 60]. In figure 1.2c-d the difference between the deterministic
and stochastic spreading for a one-dimensional droplet is illustrated. It is clear
that thermal fluctuations accelerate the rate at which the droplet spreads. A
similar study has also been conducted in the stochastic elastohydrodynamic case
of the levelling of a blister [61], combining numerical simulations and a scaling
analysis with similar results. Besides their apparent influence on the interface
dynamics it has also been shown that thermal fluctuations can enhance the bulk
diffusion and transport of particles in soft nanochannels due to fluctuations of
the channel walls [62, 63].

This thesis is a collection of articles that explore the dynamics of different
thin film systems to which the lubrication approximation is applicable. The
thesis is structured as follows; in chapter 2 we define the relevant forces acting
on a thin film interface and show the derivation of the associated mathematical
expressions, which are often omitted in the published literature. In chapter 3 we
present the viscous flow equations, i.e. the Navier-Stokes equations, and utilize
the lubrication approximation to obtain the thin film equations for the forces
described in chapter 2. In chapter 4 we discuss the numerical methods we have
used and derive the variational formulation of the thin film equations used in
our finite element analysis before we summarise our article findings in chapter
5. Finally, in chapter 6 we conclude the introductory part of this thesis with a
future perspective on the research.
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Chapter 2

Liquid and elastic interfaces

2.1 Surface Tension

We consider the case of a thin viscous film of height h(x, y, t) in the z-direction,
as depicted in figure 2.1, with x, y are the horisontal spatial coordinates and t is
time. The characteristic horisontal length scale of our film is L and by a thin
film we mean that h(x, y, t)/L � 1. The film shares its upper boundary with
a gas of negligible viscosity compared to the viscosity of the liquid, effectively
yielding zero shear at the interface. At length scales below the capillary length,
Lc = [γ/(Δρg)]1/2 with γ the surface tension coefficient, Δρ the density difference
between the two phases and g the gravitational acceleration, the flow dynamics
is governed by surface tension forces. The coupling between the capillary stresses
at the liquid-gas interface and the hydrodynamic pressure in the fluid is given
by the Young–Laplace equation [1]

p(x, y, t) − p0 = γ (∇ · n) (2.1)

with p0 the ambient pressure and n the normal vector to the liquid-gas interface
which is given as

n =
∇(z − h(x, y, t))
|∇(z − h(x, y, t))| . (2.2)

As such, and when omitting the constant ambient pressure, we can substitute
Eq.(2.2) in Eq.(2.1) to express the coupling between the hydrodynamic pressure
and the capillary stress as a function of the film height

p(x, y, t) = γ(∇ · n)
� −γ∇2h(x, y, t).

(2.3)

h(x, y, t)

n

x

y
z

L

Figure 2.1: Schematic of a thin film with an interface located at z = h(x, y, t),
where the liquid film is supported by a rigid substrate at z = 0 and exposed to
air at z = h(x, y, t).
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2. Liquid and elastic interfaces

In the last line we have considered the small-slope approximation, i.e. (∇h)2 � 1.
Beside free surface flow, there are flows with a liquid-liquid interface where the
shear stress is non-negligible. In some cases the shear stress applied to a surface
can even be the main contributor to flow dynamics in a film, but we will not
consider such films here. Furthermore, there are flows for which all the liquid
surfaces are shared with solid materials. One such flow problem is the one
encountered in elastohydrodynamics. Here, the liquid shares an interface with
an elastic plate or membrane.

2.2 Elasticity

The coupling between an applied load and the deformations of a thin elastic
plate is often obtained by considering the minimization of the Helmholtz free
energy [2]. Here, we will show the same by considering the balance of forces and
moments acting on a thin elastic plate [3, 4, 5]. We consider the infinitesimal
plate element depicted in figure 2.2 that is of length Δx, width Δy and thickness
d. In figure 2.2(a) we plot the resultant in-plane forces Tij , out-of-plane forces

x

y

z

Δx

Δy

p(x, y, t)

Tyy

Txx

Fx

Fy

Px

Py

d

Tyx

Txy

(a)
x

y

z

Δx

Δy

Myx

Mxy

d

Myy

Mxx

(b)

Txx

Fx

Txx +
ΔTxx
Δx Δx

Fx +
ΔFx
Δx Δx

θx

θx +
Δθ
ΔxΔx

x

z

(c)

Figure 2.2: (a) Resultant forces acting on an elastic plate element. (b) Resultant
moments acting on an elastic plate element. (c) Two dimensional cross section
of a slightly-bent plate element. The angle θ are assumed to be small and are
exaggerated in the figure for clarity.
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Elasticity

Fi and shearing surface stress Pi where i, j indicates summation over 1, 2 with
x1 = x and x2 = y. In contact with a liquid there will be a load per unit area
acting on the plate, from the hydrodynamic pressure. In figure 2.2(b) we plot
the resultant moments Mij . Furthermore, the deformations make the plate
deflect a length h(x, y, t) from its flat equilibrium shape resulting in an angle θi

appearing between the plate and the horizontal plane as depicted in figure 2.2(c).
However, the deflections are assumed to be small such that the approximations
θi � ∂h/∂xi, sin θi � θi, cos θi ≈ 1 are valid. We therefore assume that any
thickness variations of the plate is negligible and we thus define the resultant
forces and moments as

Tij =
∫ d/2

−d/2
σijdz , (2.4)

Mij =
∫ d/2

−d/2
zσijdz , (2.5)

with σij the Cauchy stress tensor [2]. The dimension of the resultant forces is
force per unit length and the dimension of the resultant moments is moment
per unit length. We now consider the case of zero shear on the plate surface,
Px = Py = 0. We assume the response time of the elastic material is small
compared to the observation time such that any change in the pressure yields
an instantaneous response in the elastic deformation of the plate. Therefore we
consider the plate to be at equilibrium and we obtain six equations of equilibrium,
three for the force resultants and three for the moment resultants. In the limit
Δx, Δy → 0 and to leading order we get the three force equations [3]

x :
∂Txx

∂x
+

∂Txy

∂y
= 0,

(2.6)

y :
∂Tyy

∂y
+

∂Tyx

∂x
= 0,

(2.7)

z :
∂Fx

∂x
+

∂

∂x

(
Txx

∂h

∂x
+ Txy

∂h

∂x

)
+

∂

∂y

(
Tyy

∂h

∂y
+ Txy

∂h

∂y

)
+

∂Fy

∂y
= −p,

(2.8)

and the three moment resultants equations

x :
∂Myy

∂y
+

∂Mxy

∂x
= Fy, (2.9)

y :
∂Mxx

∂x
+

∂Myx

∂y
= Fx, (2.10)

z : Txy − Tyx = 0. (2.11)
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2. Liquid and elastic interfaces

In Eq.(2.8)(c) the notation h = h(x, y, t) was used due to spatial constraints.
The last equation points out the fact that the elastic stress tensor is symmetric.
In the following derivation we assume plane stress conditions [2], i.e. σiz = 0
and that the deformations are of such order that the normal vector is parallel
with the vertical axis. A displacement vector ud = [ud, vd, wd] can then be
defined as

ud(x, y, z, t) = ud(x, y, t) − z
∂h(x, y, t)

∂x
, (2.12a)

vd(x, y, z, t) = vd(x, y, t) − z
∂h(x, y, t)

∂y
, (2.12b)

wd(x, y, z, t) = h(x, y, t). (2.12c)

Furthermore, due to the plane-stress conditions the stress-strain relation is given
by [2]

σxx =
E

1 − ν2 (uxx + νuyy) , (2.13a)

σyy =
E

1 − ν2 (uyy + νuxx) , (2.13b)

σxy =
E

1 + ν
uxy, (2.13c)

with the strain defined as

uij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
+

1
2

∂h(x, y, t)
∂xi

∂h(x, y, t)
∂xj

. (2.14)

By combining Eqs.(2.12),(2.13),(2.14) and inserting into Eq.(2.5) we find that
the resultant moments are purely functions of h(x, y, t):

Mxx = − Ed3

12(1 − ν2)

[
∂2h(x, y, t)

∂x2 + ν
∂2h(x, y, t)

∂y2

]
, (2.15)

Myy = − Ed3

12(1 − ν2)

[
ν

∂2h(x, y, t)
∂x2 +

∂2h(x, y, t)
∂y2

]
, (2.16)

Myx = − Ed3

24(1 + ν)

[
∂

∂y

(
∂h(x, y, t)

∂x

)
+

∂

∂x

(
∂h(x, y, t)

∂y

)]
, (2.17)

with E the Young’s modulus of the elastic material and ν the Poisson ratio.
Inserting the resultant moments into Eqs.(2.9)-(2.10), which subsequently are
inserted into Eq.(2.8) we get the coupling between the applied load and elastic
stresses, here expressed in vector notation [2, 6]

p(x, y, t) =
Ed3

12(1 − ν2)
∇4h(x, y, t) − ∂

∂xi

(
Tij

∂h(x, y, t)
∂xj

)
. (2.18)

This equation combined with Eqs.(2.6)-(2.7) are collectively known as the Föppl-
von Kármán equations.

14



References

In the literature, there are two commonly used simplifications of this model.
The first being the case of no in-plane stress which yields a pure bending-driven
equation [7, 8, 9]

p(x, y, t) = B∇4h(x, y, t) (2.19)

where we have defined the plate bending rigidity B as

B =
Ed3

12(1 − ν2)
. (2.20)

The second simplification is the one of isotropic in-plane tension, i.e. Tij = T is
a constant in the entire plate which gives [10, 11]

p(x, y, t) = B∇4h(x, y, t) − T∇2h(x, y, t) (2.21)

The latter equation is often solved with conservation of the plate area as
an integral constraint, replacing Eqs.(2.6)-(2.7), to obtain a value for T [10].

As we have now defined the coupling between the hydrodynamic pressure in the
liquid and the forces acting on the liquid-gas and liquid-elastic interface we need
to describe how the hydrodynamic pressure is coupled to the viscous flow in the
thin film. In order to do so we must first provide a description of the motion of
a viscous liquid.
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Chapter 3

Thin film dynamics

3.1 Navier-Stokes equations

The continuum description of the motion of a Newtonian viscous fluid is given
by the Navier-Stokes equations [1]. It is a set of partial differential equations for
which the first equation corresponds to conservation of momentum

∂u
∂t

+ (u · ∇)u = −1
ρ

∇p + μ∇2u + ∇ · S (3.1)

with u = [u, v, w] being the fluid velocity vector, ρ the fluid density, p the
hydrodynamic pressure and μ the dynamic viscosity. The unusual last term
in Eq.(3.1) accounts for thermal fluctuations in the liquid for which S is
the symmetric fluctuating stress tensor with zero mean [2]. We neglect any
gravitational effect as we only consider flows for which the characteristic capillary
length and the elastogravity length Le = (B/ρg)1/4 [3] are small. The second
equation describes conservation of mass, which for an incompressible Newtonian
fluid of constant density is formulated as

∇ · u = 0. (3.2)

3.2 Lubrication theory

Lubrication theory [1] is the theory that describes viscous fluid flow in a geometry
where one length scale is much smaller than the remaining two. Here we consider
a thin film where the vertical length scales as a characteristic film thickness
h̄ and the two horizontal coordinates, x, y, scales as a characteristic system
width L, with the ratio between the two ε = h̄/L � 1. Lubrication theory is
valid for small film Reynold numbers which is defined as Ref = ε2Re where
Re = ρUh̄/μ is the Reynolds number and U a characteristic horizontal flow
velocity. Thus, lubrication theory is valid for any finite Reynolds number as
long as ε is sufficiently small. From a scaling analysis of the continuity equation,
Eq.(3.2), we find that the vertical velocity component scales as w ∼ Uε. From
this, to leading order in ε, Eq.(3.1) becomes

∂p

∂x
= μ

∂2u

∂z2 +
∂Sxz

∂z
, (3.3)

∂p

∂y
= μ

∂2v

∂z2 +
∂Syz

∂z
, (3.4)

∂p

∂z
= 0. (3.5)
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3. Thin film dynamics

As the hydrodynamic pressure p(x, y, t) is not a function of the vertical coordinate
z we can integrate Eq.(3.3) and Eq.(3.4) with respect to z over the height of the
film to obtain the horizontal flow components

u(x, y, t) =
1

2μ

∂p

∂x
z2 + A1z + B1 +

∫ z

0
dz′Sxz(z′), (3.6)

v(x, y, t) =
1

2μ

∂p

∂y
z2 + A2z + B2 +

∫ z

0
dz′Syz(z′). (3.7)

The four coefficients A1, A2, B1 and B2 are determined from the boundary
conditions at the two interfaces of the liquid phase. An illustration of the three
thin film geometries that are relevant to this thesis are depicted in figure 3.1
for which the different dynamics are discussed below. At the solid interface we
employ the no-slip boundary condition and at the free surface we can assume
that the shear stress from the air is negligible due to its small viscosity. After
the coefficients are found we can obtain the thin film equation by integrating
the continuity equation over the film thickness

∫ h(x,y,t)

0
dz

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= 0. (3.8)

z = 0

z = h− hm

z = h

Liquid mobile layer

Liquid film Liquid film

Air

Glassy film

z

(a) (b) (c)

Free surface Elastic plateFree surface

Figure 3.1: A schematic of the three thin film geometries at stake in this thesis.
(a) A glassy material with a thin mobile layer of thickness hm at the free surface
with the glassy film considered to be solid, (b) a liquid film with a free surface,
(c) a liquid film covered with an elastic plate.
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Deterministic thin film regimes

3.3 Deterministic thin film regimes

In the so-called deterministic regime we neglect any effect from thermal
fluctuations, i.e. S = 0. The molecular scale at which thermal fluctuation
appear make this approximation valid for flows of greater thickness than a few
nanometers.

3.3.1 Capillary-driven flow

The capillary-driven thin film equation describes the dynamics in a thin viscous
film supported by a solid substrate and with a free interface to a gaseous phase
of negligible viscosity as illustrated in figure 3.1b. A characteristic parameter
describing flows that are driven by the balance of viscous and surface tension
forces is the capillary number Ca = μU/γ [4] for which a small value indicates
a surface tension dominated regime. We find the coefficients in Eqs.(3.6)-(3.7)
by applying a no-slip condition at the solid substrate, z = 0, and a zero shear
condition at the free surface z = h(x, y, t). Applying the Leibniz integral rule
[1] to Eq.(3.8), combined with Eq.(2.3), we find the capillary-driven thin film
equation

∂h(x, y, t)
∂t

+
γ

3μ
∇ · [

h3(x, y, t)∇∇2h(x, y, t)
]

= 0. (3.9)

From a modelling perspective, this equation has been essential to describe many
dynamical processes [5]. By balancing the viscous forces in the fluid and the
surface tension forces acting on the free interface it reproduces the canonical
results of Tanner [6, 7], demonstrating that the baseline radius of a completely
wetting droplet displays a power-law behaviour in time (R(t) ∼ t1/10).

The nonlinearity of the equation comes from the cubic amplitude term. By
considering the film thickness to consist of two parts, one equilibrium thickness
of constant thickness h0 and one spatiotemporal perturbation amplitude ĥ, we
see from Eq.(3.9) that for a droplet spreading on a pre-wetted layer of the
same viscosity, the nonlinear effects should be decreasing for an increasing pre-
wetted layer thickness. A mathematical analysis of the thin film equation [8]
demonstrated the existence of two asymptotic spreading regimes determined by
the ratio between the droplet height and the pre-wetted layer thickness. One is
the nonlinear regime of Tanner’s law that is valid for large ratio values, and the
other is a linear regime for small ratio values for which the spreading rate of the
droplet is significantly increased.

Similar to the capillary-driven thin film equation, the flow dynamics in the
mobile layer of a glassy material is driven by the surface tension forces acting on
the free interface. However, due to the existence of the mobile layer (see figure
3.1(a)) of constant thickness hm, Eq.(3.8) is here linear by nature, and reads [9,
10]

∂h(x, y, t)
∂t

+
γh3

m

3μ
∇4h(x, y, t) = 0. (3.10)

The form of this equation is reminicent of the linearized capillary-driven thin
film equation but with a different prefactor called the mobility parameter [10].
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3. Thin film dynamics

However, the linearity of this equation is purely due to the boundary conditions
and should not be confused with the existence of a thick supporting film as we
in fact are in the opposite regime. A particular way to obtain values for the
mobility parameter is by mathcing numerical solutions to experimental data [10].
A novel observation is that a scaling analysis of Eq.(3.10) suggest that a droplet
spreading on the mobile layer should follow a R(t) ∼ t1/8 behaviour. This is
different from capillary-driven spreading behaviour suggested by Tanner’s law
and is yet to be experimentally confirmed.

3.3.2 Elastohydrodynamic flow

The last geometry to consider is the one of a liquid film which is capped by
an elastic membrane, see figure 3.1(c). As there is a liquid-solid interface at
z = h(x, y, t) we employ the no-slip boundary condition at both liquid-solid
interfaces. Eq.(3.8), combined with Eq.(2.18), then becomes

∂h(x, y, t)
∂t

=
1

12μ
∇ ·

[
h3(x, y, t)∇

(
B∇4h(x, y, t) +

∂

∂xi

(
Tij

∂h(x, y, t)
∂xj

))]
.

(3.11)
Lister et al. [3] used an asymptotic matching procedure to derive an
elastohydrodynamic equivalent to Tanner’s law. For a fluid filled elastic blister
spreading on top of a very thin pre-wetted layer, the dynamics can be divided
into a bending-driven regime and a tension-driven regime. As the blister spreads,
the elastic sheet is peeled off from the pre-wetted layer. For thin films this
process is very slow and the pressure in the bulk of the blister can be considered
to be uniform. Further analysis on the levelling of a viscous bump, capped by
an elastic sheet [11, 12], found the elastohydrodynamic Tanner exponent to be
R(t) ∼ t1/11. A transition from the nonlinear regime to the linear regime is also
found for elastohydrodynamic flows using scaling analysis [12], see figure 3.2a.

Effects from spatial confinement on an elastic plate have been studied in a
one-dimensional geometry with a large pre-wetted layer thickness and isotropic in-
plane tension, Tij = T [13]. Analysis revealed that when compressing the plate,
initial wrinkles are formed with a wave length that grows as λ ∼ (t/ log(t))1/6.
Result from [13] are reproduced and plotted in figure 3.2(b). Starting with
a random initial condition for the height perturbation ĥ on top of a film with
equilibrium thickness h0 = 1, wrinkles form immediately and grow in width
until they merge. Towards the end, the number of wrinkles is reduced before
the entire plate buckles into a final equilibrium shape where the plate energy is
at a minimum. Preliminary investigations into the effects of confinement in the
nonlinear regime, for a very thin pre-wetted layer, are displayed in figure 3.2c.
Here the initial film thickness is h0 = 0.01. Using the similar random initial
condition as in the thick film regime we see that the dynamics change. It takes
longer time before the wrinkles form and instead of a homogenous merging of
wrinkles, there seems to be one wrinkle that initiates a buckling-like process.
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Stochastic thin film regimes

Figure 3.2: (a) Temporal evolution of the radius, R(t), of an axisymmetric fluid
filled blister spreading on top of viscous films of different equilibrium thickness h0.
(b)-(c) Wrinkle formation in spatially compressed thin elastic plates resting on
viscous films of different thickness. The figures show the one-dimensional height
contours of the film profiles over time. The white color indicate film thickness
less than the equilibrium thickness h0. (b) Linear regime, the supporting film
thickness is unity, (c) Nonlinear regime, supporting film thickness is h0 = 0.01.

A studied problem that highlight the importance of including the full Föppl-
von Kármán equations is the one of instabilities that occur at the advancing front
of a spreading blister and fingering instabilites in confined elastohydrodynamic
flows [14, 15, 16, 17, 18, 19].

3.4 Stochastic thin film regimes

Traditionally, fluctuations dynamics such as Brownian motion have been studied
using molecular dynamics simulations or phase separation in binary mixtures
using phase field models. A phenomenological fluctuating hydrodynamical model
was developed by Landau and Lifshitz [20] by adding a fluctuating symmetric
stress to the Navier-Stokes momentum equation (Eq.(3.1)). Further studies
on the origin of the fluctuating stress showed that it can be derived from the
Boltzmann equation [21], and in the last decades the fluctuating stress have been
included in coarse-grained continuum models [11, 22, 23, 24]. The stochastic
elastohydrodynamic thin film equation associated with the Eqs.(3.3)-(3.5) is

∂h(x, y, t)
∂t

= ∇ ·
[

h3(x, y, t)
12μ

∇p(x, y, t) + Γh3/2(x, y, t)η(x, y, t)
]

(3.12)

with Γ = (kBTa/6μ)1/2 the noise amplitude term with kB the Boltz-
mann constant and Ta the ambient temperature. η(x, y, t) is the gaus-
sian white noise with zero mean and delta correlated in space and time as
〈η(x, y, t)η(x′, y′, t′) = δ(x − x′)δ(y − y′)δ(t − t′)〉 with δ the Dirac delta func-
tion. The last term in Eq.(3.12) is obtained by averaging the stochastic terms in
Eqs.(3.6)-(3.7) over the height when integrating Eq.(3.8) in the z-direction. A
recent study show that this formulation fulfils the condition of detailed balance
[25].
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3. Thin film dynamics

The effect of thermal fluctuations on droplet spreading dynamics, and its
elastohydrodynamic analogue, have been studied with analytical and numerical
tools [11, 23]. Both studies highlight a crossover from the nonlinear Tanner’s
regime to a stochastic driven regime.
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Chapter 4

Numerical methods

The main challenge when solving thin film equations with numerical tools is that
they are partial differential equations (PDEs) with higher order derivatives of
the film profile height h(x, y, t) and a cubic nonlinearity in the film height. But
there are well developed methods that ease the numerical implementation which
we will discuss below.

4.1 Finite element method

At the core of the finite element method lies the variational formulation of a
PDE [1]. This is convenient when studying equations containing higher order
derivatives as it reduces the order of the equation. We now turn our attention to
the elastohydrodynamic thin film equation, Eq.3.11. As the following procedure
is general for all problems studied in this thesis we limit our scope in the
following to the case of bending-driven flow, i.e. Tij = T = 0. It is desired when
discretizing our numerical domain to use piecewise linear finite elements. This
is mainly due to the increased computational cost when choosing higher order
polynomials. There are also constraints related to the smoothness and regularity
of the solution in order to benfit from higher order polynomials, which will not
be discussed here. We refer the reader to the cited literature for additional
information regarding such questions. To be able to use piecewise linear elements
we introduce an auxiliary function f(x, y, t) = ∇2h(x, y, t) such that the pressure
term reads p(x, y, t) = B∇2f(x, y, t). By doing this we can split our PDE into
three coupled equations:

∂h

∂t
=

1
12μ

∇ · (
h3∇p

)
, (4.1a)

p = B∇2f, (4.1b)
f = ∇2h. (4.1c)

Thus, we can seek a solution for all three variables in the Sobolev space
H1

0 [1]. We multiply Eqs.(4.1)(a-c) with the test functions φ, ψ and ϕ and
perform integration by parts over the spatial domain Ω to obtain the variational
formulation of the problem: find h, f, p ∈ H1(Ω) such that

∫
Ω

∂h

∂t
φ dx +

1
12μ

∫
Ω

h3∇p · ∇φ dx − 1
12μ

∫
∂Ω

h3∇p · nφ dx = 0, ∀ φ ∈ H1(Ω),

(4.2a)
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∫
Ω

pψ dx + B

∫
Ω

∇f · ∇ψ dx − B

∫
∂Ω

∇f · nψ dx = 0, ∀ ψ ∈ H1(Ω),

(4.2b)∫
Ω

fϕ dx +
∫

Ω
∇h · ∇ϕ dx −

∫
∂Ω

∇h · nϕ dx = 0, ∀ ϕ ∈ H1(Ω).

(4.2c)

with n the boundary normal vector in this context. To solve Eqs.(4.2) we
must apply boundary conditions at the boundary ∂Ω. Relevant conditions for
the problems in this thesis are Dirichlet or Neuman conditions, i.e. setting a
value for the function we are solving for or its derivative, respectively [1]. The
type of boundary condition we choose depends on the physical system we are
interested in. To solve the temporal problem in Eq.(4.2)(a) we discretize the
time derivative with a backward Euler scheme

(
∂h

∂t

)n+1
≈ hn+1 − hn

Δt
. (4.3)

with n being the time step. We solve the coupled set of equations in Eq.(4.2)
implicitly in a mixed function space using a Newton solver from the open-source
finite element library FEniCS [2]. The Newton solver is an iterative solver that
iterates until a pre-set residual is reached. When the desired residual is obtained
we assign the solution hn+1 to hn before we start the Newton iteration procedure
over again.

For further details regarding implementation, theory or the FEniCS library
in general we refer the reader to the cited literature [1, 2].
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Chapter 5

Summary of papers

5.1 Paper I: Asymptotic regimes in elastohydrodynamic
and stochastic leveling on a viscous film

An elastic sheet that deforms near a solid substrate in a viscous fluid is a situation
relevant to various dynamical processes in biology, geophysics, and engineering.
Here, we study the relaxation dynamics of an elastic plate resting on a thin
viscous film that is supported by a solid substrate. By combining scaling analysis,
numerical simulations, and experiments, we identify asymptotic regimes for the
elastohydrodynamic leveling of a surface perturbation of the form of a bump,
when the flow is driven by either the elastic bending (figure 5.1a) of the plate
or thermal fluctuations (figure 5.1b). In both cases, two distinct regimes are
identified when the bump height is either much larger or much smaller than the
thickness of the prewetted viscous film. Our analysis reveals a distinct crossover
between the similarity exponents with the ratio of the perturbation height to
the film height.
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Figure 5.1: Nondimensional bump height as a function of dimensionless time.
The colored diamond-shaped markers are rescaled data points from the numerical
solutions of the dimensionless elastohydrodynamic thin film equation. The black
circle-shaped marker are scaled experimental data points. (a) Deterministic
bending-driven regime (b) Stochastic regime.

5.2 Paper II: Universal Self-Similar Attractor in the
Bending-Driven Leveling of Thin Viscous Films

We study theoretically and numerically the bending-driven leveling of thin viscous
films within the lubrication approximation. We derive the Green’s function of
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ε(
ξ,
t)
/ε
(0
,t
)

ξ

t

Eq.(16)

f(ξ)/f(0)
(Eq.(14))

Figure 5.2: Rescaled film profiles as a function of a similarity variable. The
two panes show the numerical solution to the bending-driven thin film equation
starting from different initial conditions. Both profiles converge in time towards
the universal self-similar attractor, represented by the black dashed line.

the linearized thin-film equation and further show that it represents a universal
self-similar attractor at long times. As such, the rescaled perturbation of the film
profile converges in time towards the rescaled Green’s function, for any summable
initial perturbation profile, see figure 5.2. In addition, for stepped axisymmetric
initial conditions, we demonstrate the existence of another, short-term and one-
dimensional-like self-similar regime. Besides, we characterize the convergence
time towards the long-term universal attractor in terms of the relevant physical
and geometrical parameters, and provide the local hydrodynamic fields and global
elastic energy in the universal regime as functions of time. Finally, we extend
our analysis to the non-linear thin-film equation through numerical simulations.

5.3 Paper III: Capillary deformation of ultrathin glassy
polymer films by air nanobubbles

Confined glasses and their anomalous interfacial rheology raise important
questions in fundamental research and numerous practical applications. In
this work, we study the influence of interfacial air nanobubbles on the free
surface of ultrathin high-molecular-weight glassy polystyrene films immersed
in water, in ambient conditions (see figure 5.3a). In particular, we reveal the
counterintuitive fact that a soft nanobubble is able to deform the surface of a rigid
glass, forming a nanocrater with a depth that increases with time. By combining
in situ atomic-force-microscopy measurements and a modified lubrication model
for the liquidlike layer at the free surface of the glass, we demonstrate that the
capillary pressure in the nanobubble together with the liquidlike layer at the
free surface of the glass determine the spatiotemporal growth of the nanocraters.
Finally, from the excellent agreement between the experimental profiles and the
numerical solutions of the governing glassy thin-film equation (figure 5.3c), we
are able to precisely extract the surface mobility of the glass. In addition to
revealing and quantifying how surface nanobubbles deform immersed glasses,

28



Paper IV: Nanobubble-induced flow of immersed glassy polymer films

Figure 5.3: (a) Schematic of a nanobubble placed on top of a thin film of
polystyrene. (b) The thin film flows due to the large Laplace pressure inside
the nanobubble. (c) Comparing the numerical solution of the glassy thin film
equation with experimental data.

until the latter eventually dewet from their substrates, our work provides a novel,
precise, and simple measurement of the surface nanorheology of glasses.

5.4 Paper IV: Nanobubble-induced flow of immersed glassy
polymer films

We study the free-surface deformation dynamics of an immersed glassy thin
polymer film supported on a substrate, induced by an air nanobubble at the
free surface. We combine analytical and numerical treatments of the glassy
thin film equation, resulting from the lubrication approximation applied to the
surface mobile layer of the glassy film, under the driving of an axisymmetric step
function in the pressure term accounting for the nanobubble’s Laplace pressure.
Using the method of Green’s functions, we derive a general solution for the film

H
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,T
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Figure 5.4: (a) Evolution of the surface profile of a glassy thin film in the presence
of a nanobubble. The solid lines are the numerical solution to the glassy thin film
equation and the dashed line are the numerical estimate of the profile integral
solution. (b) Normalized central height of the bubble-induced perturbation of
the film profile as a function of time. (c) Normalized excess surface energy of
the film as a function of time. The circle-shaped points are calculated using the
numerical estimate of the surface profile and the dashed line is the theoretical
prediction.
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profile (figure 5.4a). We show that the lateral extent of the surface perturbation
follows an asymptotic viscocapillary power-law behaviour in time, and that the
film’s central height decays logarithmically in time in this regime, see figure 5.4b.
This process eventually leads to film rupture and dewetting at finite time, for
which we provide an analytical prediction exhibiting explicitly the dependencies
in surface mobility, film thickness and bubble size, among others (see figure 5.4c).
Finally, using finite-element numerical integration, we discuss how non-linear
effects induced by the curvature and film profile can affect the evolution.

5.5 Paper V: Film deposition and dynamics of a
self-propelled wetting droplet on a conical fibre

A viscous droplet placed on a conical structure will spontaneously move towards
the thicker part of the structure. The spontaneous motion occurs because there
is a difference of the contact angles at the advancing front and the receding part
of the droplet due to the conical structure.

We study the dynamic wetting of a self-propelled viscous droplet using the
time-dependent lubrication equation on a conical-shaped substrate for different
cone radii, cone angles and slip lengths. The droplet velocity is found to increase
with the cone angle and the slip length, but decrease with the cone radius.
We show that a film is formed at the receding part of the droplet, much like
the classical Landau–Levich–Derjaguin film. The film thickness hf is found to
decrease with the slip length λ. By using the approach of matching asymptotic
profiles in the film region and the quasi-static droplet, we obtain the same
film thickness as the results from the lubrication approach for all slip lengths.
We identify two scaling laws for the asymptotic regimes: hf h′′

o ∼ Ca2/3 for
λ � hf and hf ho ∼ (Ca/λ)2 for λ � hf ; here, 1/h′′

o is a characteristic length
at the receding contact line and Ca is the capillary number. We compare the
position and the shape of the droplet predicted from our continuum theory with
molecular dynamics simulations, which are in close agreement. Our results show
that manipulating the droplet size, the cone angle and the slip length provides
different schemes for guiding droplet motion and coating the substrate with a
film.

5.6 Paper VI: Film coating by directional droplet spreading
on fibers

Plants and insects use slender conical structures to transport and collect small
droplets, which are propelled along the conical structures due to capillary action.
These droplets can deposit a fluid film during their motion, but despite its
importance to many biological systems and industrial applications, the properties
of the deposited film are unknown. We characterize the film deposition by
developing an asymptotic analysis together with experimental measurements
and numerical simulations based on the lubrication equation. We show that
the deposited film thickness depends significantly on both the fiber radius and

30



Paper VI: Film coating by directional droplet spreading on fibers

the droplet size, highlighting that the coating is affected by finite-size effects
relevant to film deposition on fibers of any slender geometry. We demonstrate
that by changing the droplet size, while the mean fiber radius and the capillary
number are fixed, the thickness of the deposited film can change by an order
of magnitude or more. We show that self-propelled droplets have significant
potential to create passively coated structures.
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Chapter 6

Future perspective

This thesis is a collection of articles that use lubrication theory to describe a
variety of flow phenomena driven by different mechanisms. Below I outline some
interesting future problems for which thin film models can contribute towards
understanding the underlying physics that dictate the dynamics as well as some
thoughts on natural extensions of this work.

With increasing accuracy and resolution in experimental measurements the
scale on which we can observe dynamical systems are ever decreasing. This has
enabled the study of fluctuating molecular dynamics such as brownian motion of
particles in confinement. However, for fluctuations to dominate the dynamics in
previously discussed spreading processes there is need for liquids with vanishingly
small surface tension coefficients. One way to possibly omit this is to study
fluctuation assisted spreading of droplet in critical binary mixtures close to
the critical temperature. When approaching the critical temperature surface
tension vanishes. Experiments conducted by our collaborators in the group of
Dr. Jean-Pierre Delville at the University of Bordeaux show that a spreading
droplet deviates from the predictions of Tanner’s law when approaching the
critical temperature. This is interesting because it can enable us to study the
effect of thermal fluctuations on thin film flows above the nanoscale.

It is well known that a thin fluid film can rupture and dewet a solid substrate
if the film surface is perturbed from its equilibrium state, a process which is
governed by the balance between surface tension forces and a disjoining pressure.
At the sub-micron scale, such destabilising perturbations can naturally be caused,
and enhanced, by thermal fluctuations and it is therefore difficult to control the
stability of thin films at these scales. However, it is also known that a shear flow
can reduce the amplitude of the thermal capillary rugosity [1]. Thus, combining
the effects from thermal fluctuations, disjoining pressure and surface tension
with an imposed shear flow can lead to a new proposal of shear stabilisation of
thin films at the nanoscale.

As discussed in section 3.3.2, local compression effects can influence the
dynamics of spatially confined elastic plates. It is therefore needed to extend the
elastic plate model to a Föppl-von Kármán model to investigate how localized
compression affect the flow dynamics, e.g. wrinkling in spatial confinement. Dr.
Joel Marthelot (Aix-Marseille University) and Dr. Jérome Gaudin (Univeristy
of Bordeaux) have performed a series of experiments where they study a thin
film of germanium telluride (GeTe) which is capped with a thin layer of silicon
nitrade (SiN). They heat the GeTe film into a viscous film using a focused laser
beam and they subsequently observe wrinkles on the SiN surface. This is an ideal
setup to further study wrinkle formation and the evolution of wrinkle wavelength
in confined elastic membranes.
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6. Future perspective

All the problems outlined here are natural extensions of the work already
conducted during my doctoral studies but they also raise challenging new question.
There are several interesting small scale features that go beyond the thin film
models we have discussed here. A particular problem related to plate dynamics
when the supporting film is heated is how the increased temperature can lead
to thermal expansion of the elastic plate. We have here only considered elastic
plates of constant thickness. An interesting question is how thermaly induced
thickness variations in the plate can affect the flow dynamics. Also, could thermal
expansion of the plate affect other properties such as the bending rigidity? With
new questions like this comes also the need for new models that can answer
them. Thus, the inclusion of additional physical effects in thin film models have
the potential to give new insight into small scale flow systems that are still not
fully understood in the near future.
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An elastic sheet that deforms near a solid substrate in a viscous fluid is a situation
relevant to various dynamical processes in biology, geophysics, and engineering. Here,
we study the relaxation dynamics of an elastic plate resting on a thin viscous film that
is supported by a solid substrate. By combining scaling analysis, numerical simulations,
and experiments, we identify asymptotic regimes for the elastohydrodynamic leveling
of a surface perturbation of the form of a bump, when the flow is driven by either the
elastic bending of the plate or thermal fluctuations. In both cases, two distinct regimes are
identified when the bump height is either much larger or much smaller than the thickness of
the prewetted viscous film. Our analysis reveals a distinct crossover between the similarity
exponents with the ratio of the perturbation height to the film height.

DOI: 10.1103/PhysRevFluids.4.124003

I. INTRODUCTION

The motion of an elastic sheet supported by a thin layer of viscous fluid is a phenomenon that
manifests itself in processes spanning wide ranges of time and length scales, from, e.g., magmatic
intrusion in the Earth’s crust [1,2], to fracturing and crack formation in glaciers [3], to pumping in
the digestive and arterial systems [4–6], or the construction of two-dimensional (2D) crystals for
electronic engineering [7]. Elastohydrodynamic flows have been studied in model geometries in
order to understand their generic features and the inherent coupling between the driving force from
the elastic deformations of the material and the viscous friction force resisting motion [8–16].
The investigation of an initially flat elastic membrane that is subsequently subjected to an applied

deformation has helped disclose how system size, magnitude, and direction of elastic deformations
[17] and spatial confinement [18,19] affect the membrane dynamics. When a membrane, resting on a
fluid, is either compressed or stretched it can generate wrinkles, where the spatiotemporal dynamics
of these folds couple to the fluid flow [18–21]. Wrinkles can be avoided by a slow out-of-plane
deformation of an elastic plate by means of injecting additional fluid into the thin prewetted film,
which leads to a peeling front driven by bending [22,23]. As the fluid blister grows in size, stretching
of the plate generates a tension that starts to dominate over bending. Once the blister is larger
than the elasto-gravity length [8], the peeling dynamics again alter character as gravity starts to
dominate, giving three distinct regimes for the propagating front [22]. If the supporting film is
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FIG. 1. Schematic of the system we are studying, where an elastic plate is supported by a viscous film on a
solid substrate, surrounded by ambient air. The elastic plate has a thickness d and a width b. Initially, the overall
profile presents a localized bump, whose profile is invariant in the y direction, i.e., quasi two dimensional. Far
away from the perturbation, the viscous film has a constant thickness ε. In the bump region, the height profiles
ĥ(x, t ) and h(x, t ) = ĥ(x, t )− ε of the viscous film and the bump, respectively, vary with the horizontal position
x and time t , and remain symmetric about x = 0. At x = 0, we define the characteristic height h(x = 0, t ) =
h0(t ) of the bump and its typical radius R(t ), with initial values given as h0(t = 0) = hi and R(t = 0) = Ri.

instead of nanoscopic thickness, elastic bending generates a restoring force trying to oppose the
van der Waals force that pulls the plate towards the wall and can lead to an elastohydrodynamic
touchdown [24] similar to the dewetting of a liquid film [25]. One way to approach a theoretical
description of elastohydrodynamics is to solve the Navier-Stokes equations for the fluid flow using
boundary conditions at the elastic interface given by the solution of the Föppl-von Kármán equation
[26], using, e.g., the immersed-boundary method [27]. Viscous flow in thin films can be described
by the lubrication theory [28] that has been widely used to study different elastohydrodynamic flow
phenomena [8,22–24,26,29]. However, not much is known about how elastohydrodynamic flows are
affected by the ratio between the geometric parameters that characterize the system as it undergoes
large changes while the driving force remain the same.
For instance, when an elastic sheet deforms onto a wall prewetted by a thin viscous film, the

dynamics of the advancing front is dictated by the local curvature of the interface [16,22]. This
elastohydrodynamic relaxation is reminiscent of capillary spreading of a viscous drop onto a solid
substrate [30–33]. Similar to capillary flows, elastohydrodynamic relaxation processes are not only
limited to very thin prewetted films. In fact, an elastic sheet with zero spontaneous curvature but with
an initial shape of a bump (Fig. 1) with a height much larger than the prewetted viscous film will
relax towards a flat equilibrium state. Inevitably, the system must then crossover from a situation
where the bump height is larger than the prewetted film height to a situation where instead the
prewetted film becomes thicker than the bump. Here we investigate how the elastohydrodynamic
leveling changes with the ratio between the bump height and the prewetted film thickness. In
particular, are there different asymptotic regimes, and how does the system transition from one to
another? At the nanoscale, thermal fluctuations are expected to contribute and may even dominate
the dynamics [29,34–37], which we quantify in the leveling dynamics. To answer these questions,
we combine numerical solutions of a mathematical model based on the lubrication theory [28] with
scaling analysis and experiments.

124003-2
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II. MATHEMATICAL MODEL AND NUMERICAL PROCEDURE

We consider the system depicted in Fig. 1, where we focus on a system where any influence
of gravity can be neglected, i.e., the bump height is smaller than the elasto-gravity length [8]. The
film height is defined as ĥ(x, t ) = h(x, t )+ ε, where h(x, t ) is the bump height measured from the
height ε of the pre-wetted layer. Only situations where the bump height h(x, t ) is small compared
with its horizontal extent and where the film slopes are small, i.e., ∂ ĥ(x, t )/∂x � 1, are considered.
We describe the viscous flow between the plate and the solid substrate using lubrication theory
[28]. When the initial deflection hi of the elastic plate is small compared with its thickness d ,
we can neglect stretching and the pressure reduces to p(x, t ) = B∂4ĥ(x, t )/∂x4, where B = Ed3/
[12(1− ν2)] is the bending rigidity of the plate, E is the Young’s modulus, and ν is Poisson’s ratio
[38]. In addition, the system is a spatially unconfined elastic sheet with the two lateral boundaries
being free to move relative to the underlying fluid. Thus, the in-plane compression is suppressed,
and bending stresses dominate the relaxation process regardless of the ratio d/hi. By assuming
incompressible flow and imposing no-slip conditions at the two solid substrates, and considering a
one-dimensional geometry as there are no variations along the y direction, one obtains the governing
equation for the evolution of the height profile (see, e.g., Ref. [8]),

∂ ĥ(x, t )

∂t
= ∂

∂x

[
B

12μ
ĥ3(x, t )

∂5ĥ(x, t )

∂x5
+ �ĥ3/2(x, t )η(x, t )

]
, (1)

where μ is the fluid’s dynamic viscosity. At small scales, thermal fluctuations can also influence
the dynamics, which is described by the last term of Eq. (1). This term mimics the stress
generated by thermal fluctuations, originates from an additional symmetric random stress term in
the Navier-Stokes equations, and is obtained by an integration in the z direction (for details see
Refs. [29,39–41]). The noise term η(x, t ) is multiplied by a prefactor � = √

kBTA/(6μb) where kB
is the Boltzmann constant, TA is the ambient temperature, b is the width of the plate along the y
direction, and η(x, t ) is modeled as a spatiotemporal Gaussian white noise such that 〈η(x, t )〉 = 0
and 〈η(x, t )η(x′, t ′)〉 = δ(x − x′)δ(t − t ′), where the 〈 〉 symbols indicate average quantities. We
nondimensionalize Eq. (1) by using X = x/Ri, Ĥ (X, T ) = ĥ(x, t )/hi, T = tBh3i /(12μR6i ), and
�(X, T ) = η(x, t )[12μR7i /(Bh3i )]

1/2. When � = 0, this nondimensionalization procedure gives us a
parameter-free partial differential equation for Ĥ (X, T ). When � > 0, the nondimensional number
N = [2kBTAR3i /(Bh2i b)]

1/2 appears as a prefactor in front of the stochastic term, andN2 measures the
ratio between thermal and bending energies. For the macroscopic system provided in our experiment
and described in detail below, i.e., TA = 300 K, hi = 2.5 μm, Ri = 20 μm, μ = 104 Pa s, and
B = 1.3× 10−12 Nm we get the noise prefactor � = 2.5× 10−13 m s−1/2 and the energy ratio
N = 1.75× 10−6 which is well within the elastic-bending-dominated regime. However, a transition
from a dominant elastohydrodynamic leveling to a dominant stochastic leveling would occur for
a system with temperature TA = 300 K, membrane perturbation height hi = 10 nm, and radius
Ri = 5 μm for a bending modulus B in the range of 10–100 kBTA where kBTA = 4× 10−21 Nm,
which corresponds to N in the range 0–8 [29].
We solve the dimensionless version of Eq. (1) numerically by using a finite element method,

and we split it into three coupled equations for the bump profile H (X, T ) = Ĥ (X, T )− ε/hi, the
linearized curvature ∂2H (X, T )/∂X 2, and the bending pressure ∂4H (X, T )/∂X 4. These fields are
discretized with linear elements and solved by using Newton’s method from the FEniCS library
[42]. For the deterministic case N = 0, an adaptive time-stepping routine has been used with an
upper time-step limit of 	T = 0.001 and a discretization in space 	X ∈ [0.001; 0.01]. For the
stochastic caseN > 0, we have used a constant time step	T = 0.001, together with a discretization
in space 	X = 0.0025. At T = 0 we impose the initial condition H (X, T = 0) = 1− tanh(50X 2).
We further impose the following boundary conditions at the boundary ∂
 of the numerical domain:
H (X ∈ ∂
, T ) = H (X ∈ ∂
, 0), ∂2H (X ∈ ∂
, T )/∂X 2 = 0, and ∂4H (X ∈ ∂
, T )/∂X 4 = 0. The
noise �(X, T ) is introduced independently at each discrete position and time step by using the
“random” class with the “randn” Gaussian subclass from the NUMPY library [43], with zero mean
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and a variance 1/(	X	T ). We avoid negative values of Ĥ (X, T ) (that might occur in the stochastic
case due to the fluctuations), by imposing that, when Ĥ (X, T ) < 10−6, it is put back to 10−6 as
in Refs. [34,36]. To verify the predictions of Eq. (1), we construct an experimental setup which is
described in the following section.

III. EXPERIMENTAL PROCEDURE

The experimental setup is composed of a fiber of polystyrene (PS) with a glass-transition
temperature Tg, PS ≈ 100 ◦C deposited on a film of the same polymer supported on a silicon (Si)
substrate. These samples are capped by a thin sheet of polysulfone (PSU) with Tg, PSU ≈ 180 ◦C.
Sample preparation is carried out as follows: PS fibers (with number-averaged molecular weight
Mn = 15.8 kg/mol and polydispersity index PDI = 1.05, Polymer Source Inc., Canada) are pulled
from the melt at 175 ◦C by using a glass rod. Thin PS films are spin casted from a toluene
solution onto 10× 10 mm2 Si substrates, leading to a thickness of 25 to 380 nm, as measured
by using ellipsometry (Accurion, EP3). The films are annealed at 110 ◦C for at least 12 hours in
vacuum to remove residual solvent and relax residual stresses. The PS fibers are then transferred
onto the PS films and the ensemble is heated briefly above Tg, PS. The heating allows the PS to
flow, thereby resulting in a bump. Thin PSU films (Mn ≈ 22 kg/mol, Sigma-Aldrich) are prepared
by spin casting from a cyclohexanone solution onto freshly cleaved mica substrates (Ted Pella,
USA). The PSU films have a thickness of ≈160 nm, as measured by using ellipsometry, and are
annealed in vacuum at 200 ◦C for at least 12 hours. The PSU films are floated on water and then
transferred onto a supporting apparatus (described previously [44]), held only by the film edges.
These freestanding films can be relaxed to an unstrained state, ensuring no in-plane tension. The
PSU films are finally transferred onto the PS sample. The part of the PSU film at the edges of the
Si wafer was then removed by using a scalpel blade prior to annealing. This was done to ensure
slippage at the boundary between the PSU film and liquid PS layer, thus rendering the relaxation
bending-dominated, as discussed above.
After preparation, the samples were annealed on a hotstage (Linkam, UK) at 130 ◦C, which is

above Tg, PS but below Tg, PSU. Hence, the PS becomes a viscous liquid while the capping PSU
film remains an elastic solid, thus realizing the system illustrated in Fig. 1. The height profile is
imaged during annealing by using optical microscopy with a red laser line filter (λ = 632.8 nm,
Newport, USA), which creates interference fringes in the region of the bump, as shown in Fig. 2(a),
due to the light that is reflected from the Si substrate. It is clear from these fringes that the initial
fiber and resulting flow are one dimensional over length scales that are many times the width of
the perturbation itself. Each interference fringe corresponds to a change in height of λ/(4n), where
n ≈ 1.57 is the average index of refraction of the two polymers that make up the sample (nPS = 1.53
and nPSU = 1.61). This allows the bump profile h(x, t ) to be reconstructed by fitting a polynomial to
the fringe data, as shown in Fig. 2(b). Such profiles can then be used to track the leveling dynamics,
and to extract in particular the evolution of the height h0(t ) of the bump with time for various initial
geometries.

IV. RESULTS

A. Elastohydrodynamic leveling

We first start by investigating the elastohydrodynamic leveling in the absence of thermal fluctua-
tions (N = 0). In Fig. 3 we show the numerical solutions of the dimensionless version of Eq. (1) for
N = 0 and we can see that the aspect ratio hi/ε controls both the timescale for leveling and the de-
tailed features of the height profile. The smaller hi/ε, the faster the dimensionless leveling process.
Also, the dip created near the advancing front of the perturbation is enhanced both in magnitude
and lateral extent for smaller hi/ε. We remark that, for each initial aspect ratio, there is a transition
period of a few numerical time steps preceding the onset of the leveling process. This part of the
data is not included in Fig. 4 because it is considered to depend on the initial condition, but does not
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FIG. 2. (a) Typical optical microscopy images showing the temporal evolution of the interference fringes
due to the liquid bump capped by the elastic plate (20 μm scale bar). The image at 20 minutes is uncropped,
showing the invariance in the y direction, while the later images are cropped at the red box. (b) Intensity profile
(averaged along the y direction) of the bump at a given time t , and corresponding reconstructed bump profile
at 400 minutes. (c) Temporal evolution of the bump profile.

influence the later dynamics. For hi/ε = 43, the numerical height profiles are further compared with
our experiments, which are found to be in good agreement. We recall here that the elastic plate is
floating on the liquid film and has edges that are free to move. Therefore, the pressure contribution
from bending still largely dominates any contribution from stretching and Eq. (1) is still valid.
We now turn to a scaling analysis of Eq. (1) for N = 0. When h0(t )/ε � 1, the equation

can be linearized and reduces to 12μ∂h/∂t = Bε3∂6h/∂x6 as ĥ(x, t ) = h(x, t )+ ε and we deduce
the long-term scaling for the temporal evolution of the horizontal length of the bump: R(t ) ∼
[Bε3t/(12μ)]1/6. Since there is area conservation in the (x, z) plane, we assume R(t )h0(t ) to
be constant, that is evaluated to Rihi at t = 0. By combining these scaling relations we get for
h0(t )/ε � 1,

h0(t )

ε
∼

(
τ

t

)1/6
, (2)

where τ = 12μh6i R
6
i /(Bε9) is the characteristic timescale for the bending-driven leveling dynamics.

Because we operate within the regime where bending dominates over stretching, a similar result
is obtained by considering the force balance between the viscous and bending forces [18]. Also,
if we include isotropic stretching due to clamped boundaries, a similar scaling law appears, but
now with an additional logarithmic term, R(t ) ∼ [t/ln(t )]1/6 [19]. However, when h0(t )/ε � 1 we
must match the curvature of a traveling-wave solution localized near the advancing front with the
quasistatic solution to obtain the correct scaling [22], i.e., constant pressure in the bump, leading
to [29]

h0(t )

ε
∼

(
τ

t

)2/17
. (3)
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(a) (b)

(c) (d)

FIG. 3. (a), (b) Bump-height profiles for an initial aspect ratio hi/ε = 43, from a numerical solution of
Eq. (1) and an experiment at two dimensionless times T as indicated, which correspond respectively to
t = 37 min and t = 416 min. The geometrical parameters are hi = 2.9 μm, Ri = 16.5 μm, and ε = 67 nm. To
account for the experimental uncertainties in the geometrical parameters, the experimental time t is divided by
a free-fitting factor α = 0.13. Note that, specifically for these figures, the initial condition for the numerical
solution was fixed by a curve fitting of the actual experimental profile at t = 13 min. (c), (d) Bump-height
profiles for an initial aspect ratio hi/ε = 0.1 from a numerical solution of Eq. (1) at two dimensionless times
T , as indicated, chosen so that the central heights H (X = 0, T ) match those in the top row.

By balancing the two asymptotic predictions above, we expect the crossover between them to occur
around t/τ ≈ 1. In addition, these asymptotic regimes suggest that h0(t )/ε is essentially a function
of t/τ only, independent of the value of hi/ε.
To test our scaling predictions, we compute numerical solutions of the dimensionless version

of Eq. (1) for N = 0, with hi/ε ∈ [10−2, 103], and extract h0(t )/ε as a function of t/τ . These
numerical results are plotted in Fig. 4 and compared with the experimental data. For each sample,
the experimental data are matched to the numerical data through one fitting parameter α in front of
the timescale τ . The values of the fluid viscosity and elastic Young’s modulus are highly sensitive
to the temperature in the experiments, and we estimate them to be μ ≈ 104 Pa s [45,46] and
E ≈ 2.6 GPa [47], respectively. Since all experiments were carried out at the same temperature
and with the same polymer, sample-to-sample variations in τ result only from uncertainties in
the geometrical parameters hi, Ri, d , and ε. The α values obtained are 0.13, 0.7, and 1.3 for
the three samples and each of these values are reasonably close to unity. More importantly, the
sample-to-sample variations in α do not exceed a factor of ten, which is well within the expected
relative error arising from the high sensitivity of τ to the geometrical parameters. The general
agreement between the experimental data and the numerical predictions is good, over about five
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FIG. 4. Nondimensional bump height as a function of dimensionless time in the bending case, for various
initial values of hi/ε ∈ [10−2; 103]. The colored diamond-shaped markers are rescaled data points from the
numerical solutions of the dimensionless version of Eq. (1) with N = 0, and the black circle-shaped markers
are scaled experimental data points. The exponents of the two asymptotic regimes of Eqs. (2) and (3) are
indicated with triangles. The inset provides a zoom in the region containing the experimental data for the
three samples, with initial aspect ratios hi/ε = 30, 43, 56, corresponding respectively to ε = 50, 67, 26 nm;
hi = 1.52, 2.9, 1.48 μm; and Ri = 9.6, 16.5, 9.9 μm. The uncertainties in all experimental length scales are
about 5%. To compensate for those, the characteristic time τ for each sample is multiplied by a free-fitting
factor α = 0.7, 0.13, and 1.3, respectively.

orders of magnitude in t/τ . The systematic early time tail in the experimental data might be
attributed to the initial compressive thermal stresses in the elastic layer, which arise due to the
rapid heating of the samples from room temperature to T = 130 ◦C, which relax prior to leveling
and the time needed for the initial shape to enter the asymptotic regime.
The master curve in Fig. 4 confirms that h0(t )/ε is a function of t/τ . Furthermore, the two

scaling regimes predicted above are indeed present, with prefactors close to unity, and the crossover
between the two being located near t/τ ≈ 1 as predicted. Any bump that initially starts in a thin
prewetted film regime h0(t )/ε � 1 will eventually cross over to a thick-film regime h0(t )/ε � 1,
with the corresponding power laws in time. As a final remark, a similar combination (not included
here) of numerical simulations and scaling analysis can be performed for an axisymmetric geometry,
leading to h0(t ) ∼ t−2/11 for hi/ε � 1, and h0(t ) ∼ t−1/3 for hi/ε � 1.

B. Stochastic leveling

Next we investigate the leveling process when it is dominated by thermal fluctuations (N > 0).
As shown in Fig. 5, the numerical solutions suggest that the aspect ratio hi/ε is again essential,
because it sets the timescale for leveling where the smaller hi/ε, the faster the dimensionless leveling
process. Moreover, by comparison with the deterministic (N = 0) case in Fig. 3, the stochastic
(N > 0) profiles exhibit spatiotemporal fluctuations and adopt different average shapes and leveling
dynamics.
To go further, we propose a scaling analysis of Eq. (1), inspired by Ref. [32]. We consider

specifically the N � 1 limit, for which the thermal fluctuations are the dominant driving contri-
bution to the dynamics and we assume that we can neglect the bending term so that Eq. (1) reduces
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FIG. 5. Contour plot of the dimensionless bump-height profile 〈H (X, T )〉 as a function of both the
dimensionless position X and time T , as obtained from numerical solutions of the dimensionless version (see
text) of Eq. (1), with N = 5, and for hi/ε = 10 (left) or hi/ε = 0.2 (right). The thick solid lines indicate
〈H (X, T )〉 = 0.03 as an arbitrary reference.

to ∂h/∂t = �∂[(ε + h)3/2η]/∂x. We consider the average quantities 〈h0(t )〉 and 〈R(t )〉, where we
invoke the ∼(tx)−1/2 scaling [34] for the root mean square value of the averaged noise over a space
interval x and a time interval t . By assuming that the average area conservation in the (x, z) plane
can be expressed as 〈h0(t )〉〈R(t )〉 ∼ hiRi, we get

〈h0(t )〉
ε

[
1+ 〈h0(t )〉

ε

]3
∼ τ�

t
, (4)

where τ� = 6μh3i R
3
i b/(kBTAε4) is the characteristic timescale for the stochastic leveling dynamics.

Interestingly, Eq. (4) describes a complete crossover between two asymptotic regimes in the
stochastic leveling dynamics: for 〈h0(t )〉/ε � 1, we obtain 〈h0(t )〉/ε ∼ (τ�/t )1/4, and thus we
recover 〈h0(t )〉 ∼ t−1/4 [34], while for 〈h0(t )〉/ε � 1, we get 〈h0(t )〉/ε ∼ τ�/t . We expect the
crossover between the two asymptotic regimes to occur around 〈h0(t )〉/ε ≈ 1, i.e., around t/τ ≈
1/8.
To test the prediction in Eq. (4), we compute the numerical solution of the dimensionless version

of Eq. (1) for 5 � N � 8, with hi/ε ∈ [10−1, 102]. By averaging over a minimum of 30 realizations,
we can extract 〈h0(t )〉/ε as a function of t/τ� , and the results are plotted in Fig. 6. The data from
the numerical solutions are in good agreement with Eq. (4) for all 〈h0(t )〉/ε and with no adjustable
parameters. Our results highlight that Eq. (4) gives an accurate prediction of the stochastic leveling
dynamics and show that the missing prefactor is close to unity. Finally, in order to further highlight
the underlying self-similarity associated with each of the two asymptotic regimes, the insets of Fig. 6
show the corresponding bump-height profiles rescaled according to Eq. (4). In each asymptotic
regime the height profiles collapse onto a universal shape which confirms the overall self-similarity
in the leveling dynamics.
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FIG. 6. Nondimensional bump height as a function of dimensionless time in the stochastic leveling
dynamics, for different initial values of hi/ε ∈ [10−1, 102]. The colored diamond-shaped markers are rescaled
data points from the numerical solutions of Eq. (1) with 5 � N � 8. Each data set is an average from a
minimum of 30 numerical solutions. The solid red line corresponds to Eq. (4) with a prefactor of order unity.
The insets show rescaled bump-height profiles for hi/ε = 100 with T ∈ [1, 10]× 10−3 (lower left) and for
hi/ε = 0.1 with T ∈ [4, 4.6]× 10−3 (upper right).

V. CONCLUSION

We have described the elastohydrodynamic and stochastic leveling of an elastic plate placed atop
a viscous film. By combining numerical solutions, scaling analysis, and experiments, we identified
various canonical regimes. Our results highlight the importance of the driving mechanism, either
by elastic bending of the plate or by thermal fluctuations, and the influence of the aspect ratio
of bump height to film height. For each of these two driving mechanisms, a crossover between two
distinct asymptotic regimes is controlled by the aspect ratio. These findings can be helpful to explain
elastohydrodynamic leveling dynamics found in biological, engineering, or geological processes.
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Confined glasses and their anomalous interfacial rheology raise important questions in fundamental research
and numerous practical applications. In this work, we study the influence of interfacial air nanobubbles on
the free surface of ultrathin high-molecular-weight glassy polystyrene films immersed in water, in ambient
conditions. In particular, we reveal the counterintuitive fact that a soft nanobubble is able to deform the
surface of a rigid glass, forming a nanocrater with a depth that increases with time. By combining in situ
atomic-force-microscopy measurements and a modified lubrication model for the liquidlike layer at the free
surface of the glass, we demonstrate that the capillary pressure in the nanobubble together with the liquidlike
layer at the free surface of the glass determine the spatiotemporal growth of the nanocraters. Finally, from
the excellent agreement between the experimental profiles and the numerical solutions of the governing glassy
thin-film equation, we are able to precisely extract the surface mobility of the glass. In addition to revealing
and quantifying how surface nanobubbles deform immersed glasses, until the latter eventually dewet from their
substrates, our work provides a novel, precise, and simple measurement of the surface nanorheology of glasses.

DOI: 10.1103/PhysRevResearch.2.043166

I. INTRODUCTION

The glass transition has been a major enigma in solid-state
physics [1] for almost a century, leading to an important
literature for the bulk case [2]. Besides a hypothetical un-
derlying phase transition, the tremendous dynamical slowing
down of glass-forming supercooled liquids has been attributed
to molecular caging, and the associated requirement for co-
operative relaxation [3] in a region of a certain cooperative
size [4].
The quest for the latter observable, and its possible di-

vergence, led to an alternative strategy: the study of glasses
in confinement [5–7]. In the particular case of thin polymer
films, anomalies have been reported, such as reductions of the
apparent glass-transition temperature Tg at small film thick-
nesses [8,9], where the presence of free surfaces played an
important role [10]. Furthermore, space-dependent Tg values
were inferred from local measurements [11]. Besides, the free
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surface of a polymer glass was discovered to be much more
mobile than the bulk, which was attributed to the existence of
a nanometric liquidlike superficial layer capable to flow under
external constraints [12–17], or equivalently for small enough
molecules to undergo surface diffusion [18–20] as in crystals
[21], which could even lead to striking engulfment phe-
nomena [22]. The previous Stokes-Einstein-like equivalence
between surface flow and surface diffusion in the mobile layer
was shown to be eventually broken for long-enough surface
polymer chains due to their anchoring into the bulk matrix
[23], and ultimately the commensurability of their typical size
with the sample thickness itself [24,25]. Finally, among other
interesting properties, spatial heterogeneities were associated
with the dynamics of thin glassy polymer films [26]. To
rationalize these observations, various numerical approaches
[27,28] and theoretical models [29–34] have been proposed,
but a unifying picture is still at large.
In this work, we study the influence of air nanobub-

bles spontaneously created at the free surface of ultrathin
high-molecular-weight glassy polystyrene (PS) films when
immersed in water, and in ambient conditions [35,36]. In con-
trast to the bubble-inflation technique used for freestanding
viscoelastic membranes [37], there is here no need for an
externally driven inflation, and the glassy films are supported
onto rigid silicon wafers and thus much less compliant. The
nanobubbles are gaseous air domains with nanometric height
and width. As a consequence of these small sizes, and from
the Young-Laplace equation, the pressure inside the bubble
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FIG. 1. Schematic of the bubble-PS film interaction. (a) An air
nanobubble spontaneously forms at the PS-water interface right after
immersion of the glassy PS sample in water. (b) Subsequently, a
nanocrater appears beneath the nanobubble, and grows with time,
as the liquidlike layers at both PS-fluid interfaces flow due to the
capillary pressure gradient.

can reach up to ∼10 bar, which—despite being much smaller
than the yield stress of the bulk glass—can lead to an external
driving force for the flow of the liquidlike layer at the free
surface of the glass. Consequently, a nanoscopic crater is
formed underneath the bubble, and grows in size with time,
as observed using an atomic-force microscope (AFM). The
latter observations are discussed in the context of a modified
lubrication model for the capillary-driven flow of the liquid-
like layer at the free surface of the glassy film, under an
external driving force. The excellent agreement between the
experimental AFM profiles and the numerical solutions of the
axisymmetric glassy thin-film equation yields a novel, precise,
and simple measurement of the surface mobility of glasses.
The value found for the latter is compared to values in the lit-
erature, and discussed in terms of polymer entanglements and
anchoring effects in confinement. Finally, the model predicts
a dewetting scenario for ultrathin polymer films, which might
have important practical consequences.

II. EXPERIMENTAL SETUP

A schematic representation of the bubble-PS film interac-
tion is shown in Fig. 1, where we define the bubble’s contact
diameter L, the bubble’s radius of curvature rb, the equilibrium
contact angle θ , and the initial PS film thickness h0. Note
that L, rb, and θ are related through volume conservation.
According to the Young-Laplace equation, the pressure inside
the bubble reads pb = pam + 2γlv/rb, where γlv is the water-
air surface tension and pam is the ambient water pressure. In
the following, we will quantify how the capillary pressure
gradient can lead to the deformation of the glassy PS film and
to the spatiotemporal evolution of the PS nanocrater. The latter
is characterized by its depth hdep and rim height hrim.

Ultrathin PS films with three different thicknesses
h0 ∈ {2.8± 0.6, 4.9± 0.6, 7.1± 0.8} nm were prepared
by spincoating a solution of PS (Sigma-Aldrich) in
toluene onto a silicon wafer, at different toluene mass
fractions {0.07, 0.10, 0.08}wt% and rotational speeds of
{1200, 1200, 1000} rpm, respectively. The thicknesses of
the PS films were measured by a scratching method [38].
The molecular weight of PS is about 350 kg/mol. After
spincoating, the PS films were baked inside an oven at a
temperature of 45◦C for 4 h, to evaporate the remaining
toluene. Here, we applied the temperature-exchange method
to generate nanobubbles: cold deionized (DI) water at about
4◦C was deposited on the PS films at about 30◦C by a glass
syringe. Upon immersion, nanobubbles were spontaneously
nucleated.
An AFM (Resolve, Bruker, USA) in tapping mode was

used to image the samples both in air and water. A silicon
NSC36/Al BS cantilever (MikroMasch) with a tip radius
<8 nm and a quoted stiffness of 1.0 N/m was used. The
measured resonance frequencies of the cantilever in air and
water were about 76 and 23 kHz, respectively. To minimize
the force applied on the nanobubbles and sample surfaces,
the setpoint for imaging was set to be only 95%–97% of the
free amplitude. While imaging in air and water, the resonance
frequencies were selected as the driving ones. The samples
were scanned at a rate of 1.5 Hz with a scan angle of 0◦.

III. RESULTS AND DISCUSSION

Figure 2(a) shows a typical AFM image of the PS film
in air with a thickness h0 = 4.9± 0.6 nm. The root-mean-
squared roughness is about 0.22 nm. After immersion in
deionized (DI) water at room temperature, nanobubbles with
diameters ranging from 30 to 100 nm spontaneously nucleated
[Fig. 2(b)] at the PS-water interface [39]. The PS sample was
kept in water for tb ≈ 240 min, before the water was removed
and the sample surface was dried in air for t − tb ≈ 250 min.
The same area of the sample was then scanned again with
the AFM, as shown in Fig. 2(c). One observes the existence
of nanocraters into the PS film. These nanocraters were gen-
erated at the exact same locations where the nanobubbles
resided, when the sample was immersed in water (see also
Fig. 4 in Appendix A for details).
The cross-sectional profiles for five different nanobub-

bles and their associated nanocraters (sorted by increasing
nanobubble size) are shown in Figs. 2(d)–2(h). Interestingly,
these profiles qualitatively ressemble the ones obtained on
low-molecular-weight PS after embedding and subsequent re-
moval of gold nanoparticles [12]. Moreover, it is clear that the
lateral sizes of the nanocraters are approximately equal to the
sizes of the nanobubbles—a commensurability valid for all
samples in this study (see Fig. 5 in Appendix B). Nanobub-
bles with contact diameters L � 50 nm typically generate
steeper nanocraters, and hdep increases with L for those
[Figs. 2(d)–2(f)]. When the contact diameter L is larger than
50 nm, the nanocraters are not as curved. Larger bubbles gen-
erate shallower craters with decreased hdep and hrim [Figs. 2(g)
and 2(h)]. With further increased L, nanocraters with nearly
flat bottoms are even created (see also Fig. 4 in Appendix A
for details).
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FIG. 2. Typical AFM images of an ultrathin glassy PS film with thickness h0 = 4.9± 0.6 nm in various situations: (a) before immersion
in water; (b) after immersion in water, where nanobubbles (white) with an average contact diameter of 50 nm appear on top of it; (c) after
immersion in water for tb ≈ 240 min, and subsequent removal of water followed by drying in air during t − tb ≈ 250 min. (d–h) Five cross-
sectional profiles of nanobubble-nanocrater couples (sorted by increasing L values): L = 43.1 nm and rb = 95.9 nm (d, couple I); L = 48.9 nm
and rb = 82.0 nm (e, couple II); L = 50.7 nm and rb = 75.9 nm (f, couple III); L = 52.8 nm and rb = 79.4 nm (g, couple IV); L = 54.8 nm
and rb = 82.0 nm) (h, couple V). The insets in each of those five panels are the 3D AFM images of the nanobubbles and the corresponding
nanocraters.

To rationalize these observations, we invoke a theoretical
model that combines two ingredients: (i) the existence of a
liquidlike layer with viscosity η and thickness hm of a few
nanometers at the free surface (i.e., exposed to any fluid) of the
glassy PS film [12,14]; and (ii) a lubrication flow in this liq-
uidlike layer [15], driven by the pressure jump between pb and
pam at the contact line where the three phases intersect, and
opposed by the restoring capillary force due to the induced
curvature at the PS-fluid interfaces. We note that the PS films
employed in this work have thicknesses of a few nanometers
only, which are: (i) comparable to the typical thickness of

the liquidlike layer [7]; and (ii) much smaller than the radius
of gyration of 350 kg/mol PS (tens of nanometers). There-
fore, the PS chains are mostly located in the liquidlike layer,
they are expected to exhibit a reduced entanglement density
compared to the one in thicker films [40–43], and we expect
no major anchoring effect [23]. Since the liquidlike layer
thickness hm is much smaller than the typical horizontal size
L, the viscous flow in the layer can be described by lubrication
theory [44], where the velocity is predominantly in the radial
direction, the pressure is constant across the thickness of the
liquidlike layer [45–47], and the viscous forces therein are
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balanced by the tangential pressure gradient discussed above.
As the stresses remain relatively low compared to usual yield
stresses and piezoviscous thresholds for polymers glasses and
melts, the viscosity η is assumed to be a constant.
In general, the stress and deformation fields associated to

one bubble could be affected by the neighboring bubbles. In a
recent study involving two microsized droplets on a polymer
film [48] (see also Fig. 6 in Appendix C), it is indeed found
that the effective interaction between the two microdroplets
is strongly influenced by their distance d , contact diameter L,
and the film thickness h0. When d > L/2 or d � h0, the two-
body interaction mediated by the film vanishes. In the present
work, the average value of d is around 50 nm, L is in between
20 nm and 45 nm, and h0 is less than 8 nm. It is thus clear that
d is much bigger than L/2 and h0. Therefore, we neglect the
influence of neighboring bubbles in the model.
We define h(r, t ) as the total thickness profile of the PS film

(see Fig. 1), assumed to be axisymmetric given the symmetry
of the nanobubble, where r is the horizontal radial spatial
coordinate, and t is time. We further assume small slopes for
the PS-fluid interfaces, as well as a no-slip boundary condition
at the bottom of the mobile layer, located at z = h(r, t )− hm,
and a no-shear boundary condition at the PS-fluid interfaces,

located at z = h(r, t ). All together, this leads to the axisym-
metric version of the glassy thin-film equation [15], with a
novel source term due to the presence of the nanobubble:

∂h(r, t )

∂t
+ h 3m
3ηr

∂

∂r

{
r

∂

∂r

[γi(r)

r

∂

∂r

(
r

∂

∂r
h(r, t )

)
− pi(r)

]}
=0,
(1)

where the surface energy γi(r) indicates γSL (PS-water) for
r � L/2 and t < tb, as well as γSV for either t > tb, or t <

tb and r < L/2; while the external pressure pi(r) indicates
pb for r � L/2 and t < tb, as well as pam for either t > tb,
or t < tb and r > L/2. Due to the constant liquidlike layer
thickness hm, the equation is linear, and formally resembles
the capillary-driven thin-film equation for bulk flow under per-
turbative profile variations [46,49]. Just before the formation
of the nanobubble (assumed to be instantaneous), the PS film
has a uniform thickness h(r, t = 0) = h0, which we use as an
initial condition.
We now nondimensionalize Eq. (1) by rescaling the vari-

ables through h = H h0, r = R L/2, t = T 3ηL4/(16γSVh 3m),
and tb = Tb 3ηL4/(16γSVh 3m), which leads to the dimension-
less form of Eq. (1):

∂H (R, T )
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+ 1

R

∂

∂R

{
R

∂
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[1− α(T )�(R − 1)
R

∂
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(
R

∂
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H (R, T )

)
− β(T )�(1− R)

]}
= 0, (2)

where � is the Heaviside function, α(T ) =
(γSV − γSL)�(Tb − T )/γSV and β(T ) = L2γLV�(Tb −
T )/(2h0rbγSV). We solve Eq. (2) numerically from the
initial condition H (R, T = 0) = 1, by using a finite-element
method where the equation is divided into two coupled
second-order partial differential equations involving two
fields [50]: the height H (R, T ) and the total pressure
P(R, T ) = α(T )�(R−1)−1

R
∂
∂R [R

∂
∂R H (R, T )]+ β(T )�(1− R).

The fields are discretized with linear elements, and the
coupled equations are solved with a Newton solver from the
FEniCS library [51]. The numerical routine is performed
with a constant time step 	T = 5× 10−4 and a uniform
spatial discretization step 	R = 5× 10−4. Finally, as
spatial boundary conditions at R = 0, we set the first-order
derivatives of the two fields to be zero due to symmetry.
Besides, we choose the size of the numerical domain such
that no dynamics occurs at the large-R boundary, and we thus
impose the first-order derivatives to be equal to zero too at
this boundary.
Figure 3(a) shows an example of a numerical solution

of Eq. (2). It includes two subsequent steps. The first one
(corresponding to the dimensionless T from 0 to 0.04) is
the nanocrater growth process with a nanobubble on top
of the nanocrater. During the process, both the dimension-
less depth hdep/h0 of the nanocrater and the dimensionless
height hrim/h0 of the rim increase monotonically with di-
mensionless time. The second step (corresponding to the
dimensionless T from 0.04 to 0.128) is the partial recov-
ery of the nanocrater after the nanobubble is removed. The
depth and height decrease monotonically with time. As the
fluid in the liquidlike layer gets displaced, we also observe a

continuous lateral shift in the dimensionless horizontal posi-
tion of the rim.
In Figs. 3(b)–3(f), we fit the numerical solutions to the

experimental profiles, for five nanocraters created by the five
selected nanobubbles [shown in Figs. 2(d)–2(h)] of increas-
ing contact diameters L from b to f. To do so, we first put
back dimensions in the numerical solutions, by using the ex-
perimental parameters: t − tb = 250 min, γSV = 40.7 mN/m,
γLV = 72.8 mN/m, and h0 = 4.9± 0.6 nm, as well as the
values of tb, L and rb for each nanobubble. As we deter-
mine the geometric parameters from a single snapshot of the
nanobubble profile, which is not perfectly symmetric, there
is some uncertainty in the obtained values. To account for
this uncertainty, we multiply L and rb by a dimensionless free
parameter ρ. For all experiments in this study, the value of the
latter is found to be in the 0.3–0.5 range, which is reasonably
close to 1 and thus acceptable. We observe that the numerical
solutions show a good agreement with experimental cross-
sectional profiles for all five exemplary nanocraters. The depth
hdep of the nanocraters first increases and then decreases with
increasing L. Interestingly, we find that it is actually rb that
determines hdep. With increasing L, rb first decreases from
95.9 nm (bubble I) to 75.9 nm (bubble III). Then it increases
from 75.9 nm (bubble III) to 82.0 nm (bubble V). The smaller
rb leads to the larger deformation in the PS film, i.e., the larger
magnitudes of the rim height hrim and crater depth hdep. This
is expected due to the Laplace pressure of the nanobubbles,
that scales as ∼1/rb, and that drives the deformation of the
PS layer.
From the fitting procedure detailed above, we extract a sin-

gle relevant free parameter: the surface mobility h3m/(3η) =
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FIG. 3. Deformation of the PS film: (a) Numerical solution of Eq. (2) over a time interval T ∈ [0, 0.128], for Tb = 0.01, α(T ) =
−0.071�(Tb − T ), and β(T ) = 5�(Tb − T ). (b–f) Cross-sectional AFM profiles (blue circular markers) in air for the five selected nanocraters
in Figs. 2(d)–2(h), and corresponding best fit (red solid curves) to the numerical solution with Tb = 0.02, ρ = 0.35, α(T ) = −0.071�(Tb − T ),
and β(T ) = 8.65�(Tb − T ) (b); Tb = 0.02, ρ = 0.36, α(T ) = −0.071�(Tb − T ), and β(T ) = 13.08�(Tb − T ) (c); Tb = 0.02, ρ = 0.4,
α(T ) = −0.071�(Tb − T ), and β(T ) = 15.19�(Tb − T ) (d); Tb = 0.02, ρ = 0.5, α(T ) = −0.071�(Tb − T ), and β(T ) = 15.75�(Tb − T )
(e); Tb = 0.01, ρ = 0.42, α(T ) = −0.071�(Tb − T ), and β(T ) = 16.4�(Tb − T ) (f). Note that the horizontal and vertical origins are
arbitrarily shifted.

2.31+1.73
−1.92 × 10−10 nm3/(Pa.s) of 350 kg/mol PS at room

temperature. Regardless of the total PS film thickness, and
the nanobubble geometry, the different experiments self-
consistently exhibit the same value of surface mobility.
Previously, the surface mobility of glassy PS was investi-
gated around Tg for a range of molecular weights [14,15,52].
Interestingly, the extrapolation to room temperature of the
Arrhenius-like trends in these works would lead to a surface
mobility over one order of magnitude lower than the one re-
ported here. This brings two possible nonexclusive scenarios:
(i) a saturation of the surface mobility at low temperature;
(ii) a reduction of the entanglement density, and thus viscosity,
in strong confinement. Indeed, while it is known that in the
near-Tg region the surface mobility exhibits an Arrhenius-like
dependence in the temperature, which is characteristic of a
liquidlike behavior [15,52], the mobility saturates at lower
temperatures [12]. Regarding the entanglement density, it is
found that polymer molecules at interfaces are less entangled
than their bulk counterparts [41–43]. The entanglement den-
sity collapses rapidly when the film thickness becomes lower
than the end-to-end distance of the polymer chains [40,53].
This further implies a reduction in viscosity [54–56]. For these
reasons, since the PS films used here are colder and thinner
than that in studies from the literature, one could expect a
much higher mobility compared to Arrhenius-like extrapola-
tions of the literature results.

Finally, we stress that the PS deformation profiles are
transient, and that they in fact will continue to evolve with in-
creasing time [see Fig. 3(a)], although very slowly. Moreover,
a careful mathematical analysis of Eq. (1) reveals the absence
of any relevant stationary state, which implies a dramatic
consequence: due to the existence of a liquidlike surface layer,
and provided the films are thin enough (i.e., h0 close to hm) to
avoid anchoring effects at large molecular weights [23], the
presence of surface nanobubbles should eventually lead to the
dewetting of any ultrathin glassy PS film [57,58]. The critical
time for dewetting is solely controlled by the parameters θ ,
γSV, γLV, h0, and L (or rb, due to volume conservation) above,
as well as the surface mobility h3m/(3η).

IV. CONCLUSION

As a conclusion, we have shown that immersing ultrathin
glassy polystyrene films in water, in ambient conditions, leads
to the spontaneous nucleation of air nanobubbles, which then
generate nanocraters into the free surface of the PS films. The
mechanism of such a dynamical deformation process is found
by combining experimental atomic-force microscopy with a
mathematical model based on lubrication theory applied to
the liquidlike layer present at the free surface of a glassy film.
The liquidlike layer is driven to flow by the pressure jump at
the contact line where the three phases intersect, between the
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nanobubble’s inner Laplace pressure and the outer ambient
pressure, and opposed by the capillary force due to the in-
duced curvature at the PS-fluid interfaces. Since the Laplace
pressure scales as the inverse of the bubble’s radius of curva-
ture, the size of the nanocraters can be finely controlled. From
the excellent agreement between the experimental profiles
and the numerical solutions of the modified glassy thin-film
equation, we extract the surface mobility of the glassy films.
Comparison of the surface mobility with extrapolated results
from the literature points towards the possible saturation of
surface mobility at low temperature, and/or the reduction
of polymeric entanglement density (and thus viscosity) in
confinement. All together, our work provides a novel, pre-
cise, and simple measurement of the surface nanorheology
of glasses. Furthermore, our results highlight the influence
of surface nanobubbles on the stability of immersed ultrathin
glassy polymer films: the nanobubbles can drive the film to-
wards dewetting, which would have important consequences
for nanoimprint lithography [59] and nanomechanical data
storage [60], to name a few.
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APPENDIX A: NANOBUBBLE-NANOCRATER
CORRELATION

Figure 4(a) shows AFM image of nanobubbles on the sur-
face of an ultrathin PS glassy film in DI water. After water
was removed, the AFM image of the exact same scanning area
is shown in Fig. 4(d). From the figure, one can see that the
sample surface is covered with nanocraters. To demonstrate
that those nanocraters were indeed produced at the exact same
locations as the nanobubbles, the AFM images of nanobubbles
and nanocraters were segmented, as shown in Figs. 4(b) and
4(e), respectively. The obtained binary images of nanobubbles
and nanocraters are shown in Figs. 4(c) and 4(f). The over-
lapped image [Fig. 4(g)] from the two binary images indicates
that the nanocraters were generated at the exact same locations
as the nanobubbles.

APPENDIX B: NANOCRATER FORMATION ON SAMPLES
WITH DIFFERENT THICKNESSES

Three PS films of different thicknesses were used.
Figures 5(a), 5(d) and 5(g) are AFM images in air of the three
PS films with thicknesses of 2.8 ± 0.6 nm, 4.9 ± 0.6 nm,
and 7.1 ± 0.8 nm, respectively. After immersion in DI water,
the obtained AFM images are shown in Figs. 5(b), 5(e) and
5(h). One can see that nanobubbles with different sizes were
produced on the surface of the PS samples. After DI water was
removed [Figs. 5(c), 5(f) and 5(i)], nanocraters were observed
on the surface of the PS samples. The sizes of the nanocraters
are highly correlated with those of the nanobubbles. Larger
nanobubbles lead to nanocraters with larger lateral widths.
For the sample with a thickness of 2.8 nm, one could ob-

serve pre-existed holes. However, we believe that these holes

FIG. 4. (a) Raw AFM image of nanobubbles at the surface of an ultrathin glassy PS film in deionized (DI) water. (b) Segmentation of the
nanobubble image. The green contours are extracted nanobubble boundaries. (c) The resulting binary image. The yellow masks are extracted
nanobubble areas. (d) Raw AFM image of nanocraters at the exact same scanning area as in panel (a). (e) Segmented nanocrater image.
(f) Resulting binary image of the segmented nanocrater image. The yellow masks are extracted nanocrater areas. (g) Superposition of the two
binary images.
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FIG. 5. (a) AFM image of the PS film with a thickness of 2.8 nm, obtained in air. (b) AFM image of the nanobubbles nucleated in the
same scanning area as in panel (a), after immersion in DI water. (c) AFM image of the nanobubble-induced nanocraters, after DI water was
removed. (d) AFM image of the PS film with a thickness of 4.9 nm, obtained in air. (e) AFM image of the nanobubbles nucleated in the same
scanning area as in (d), after immersion in DI water. (f) AFM image of the nanobubble-induced nanocraters, after DI water was removed.
(g) AFM image of the PS film with a thickness of 7.1 nm, obtained in air. (h) AFM image of the nanobubbles nucleated in the same scanning
area as in panel (g), after immersion in DI water. (i) AFM image of the nanobubble-induced nanocraters, after DI water was removed.

are not due to the dewetting of the sample at room temperature
(which would then impact the nanocrater dynamics), based
on the following fact. If the film was close to dewetting,
one would expect more holes to appear and grow with time.
Figure 5 clearly shows that the number, locations, as well
as sizes of the pre-existed holes do not change before and
after water immersion. This clearly indicates that the surface
of the solid-liquid interface is stable during the experiment,
besides the nanocrater dynamics at stake. It is highly possible
that the pre-existed holes were generated during the sample-
preparation process, through the thermal-annealing step in
particular.

APPENDIX C: INFLUENCE OF NEIGHBORING
NANOBUBBLES

For a given nanocrater, it is a priori possible that the
stress and deformation fields are influenced by neighboring
nanobubbles. The influence from neighboring nanobubbles
depends on the following geometrical parameters: the distance
d between the bubbles, the contact radius Rc = L/2, and the
substrate’s thickness h0. When d � Rc or d � h0, we expect
the effects from neighboring bubbles to vanish, which was
verified in microdroplet experiments [48] (see also Fig. 6).
According to the latter, when d/Rc becomes comparable to
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FIG. 6. Reproduction of Fig. 2 from Ref. [48]. (a) Interaction force (dots: measurements; line: model) F between two neighboring droplets
as a function of the ratio between their separation distance d and the contact radius Rc. (b) Interaction force (dots: measurements; line: model)
F between two neighboring droplets as a function of the ratio between their separation distance d and the substrate’s thickness h0.

or less than 1, and for large enough h0, there is an attractive
force F between the two droplets [see Fig. 6(a)]. Besides,
when d/h0 gets sufficiently larger than 1, the force becomes
repulsive [see Fig. 6(b)].
In the present work, the distance d between two neigh-

boring nanobubbles is around 50 nm. The contact radii of

the nanobubbles are in between 20 nm and 45 nm. The
initial thicknesses of the three different ultrathin PS films
are h0 = 2.8± 0.6, 4.9± 0.6, and 7.1± 0.8 nm. Therefore,
d/Rc > 1 and d/h0 � 1, such that the influence of neigh-
boring nanobubbles can be safely neglected in our study
(see Fig. 6).
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We study the dynamic wetting of a self-propelled viscous droplet using the
time-dependent lubrication equation on a conical-shaped substrate for different cone radii,
cone angles and slip lengths. The droplet velocity is found to increase with the cone angle
and the slip length, but decrease with the cone radius. We show that a film is formed at
the receding part of the droplet, much like the classical Landau–Levich–Derjaguin film.
The film thickness hf is found to decrease with the slip length λ. By using the approach
of matching asymptotic profiles in the film region and the quasi-static droplet, we obtain
the same film thickness as the results from the lubrication approach for all slip lengths.
We identify two scaling laws for the asymptotic regimes: hf h′′

o ∼ Ca2/3 for λ� hf and
hf h′′3

o ∼ (Ca/λ)2 for λ� hf ; here, 1/h′′
o is a characteristic length at the receding contact

line and Ca is the capillary number. We compare the position and the shape of the droplet
predicted from our continuum theory with molecular dynamics simulations, which are
in close agreement. Our results show that manipulating the droplet size, the cone angle
and the slip length provides different schemes for guiding droplet motion and coating the
substrate with a film.

Key words: drops, thin films, lubrication theory

1. Introduction

Coating a film onto a substrate as a liquid is forced to move along it is a technique
used in painting and industrial applications such as lithography, which has been studied
since the early twentieth century (Quéré 1999). Dip coating is one way to coat a plate
as it is withdrawn from a liquid reservoir above a critical plate velocity (Snoeijer et al.
2006; Maleki et al. 2011; Gao et al. 2016). A mathematical model describing this film
coating was developed in the seminal works by Landau & Levich (1942) and Derjaguin

(1943). These theoretical works sparked a great interest in film coating, later adopted for
a range of solid geometries, e.g. cylindrical fibres (White & Tallmadge 1966; Wilson
1988; De Ryck & Quéré 1996), coating by rollers (Taylor 1963; Wilson 1982) and
coating the inner surface of a channel/tube (Bretherton 1961; Tabeling & Libchaber 1986).

† Email addresses for correspondence: taksc@math.uio.no, acarlson@math.uio.no
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Some studies have focused on how other physical effects influence the film deposition such
as gravity (Derjaguin 1943; Snoeijer et al. 2008), inertia (De Ryck & Quéré 1996; Orsini &
Tricoli 2017), surfactants (Carroll & Lucassen 1973), particles on the interface (Colosqui,
Morris & Stone 2013; Dixit & Homsy 2013a,b), van der Waals forces for deposited films
of nanometric scales (Quéré, di Meglio & Brochard-Wyart 1989) as well as effects of
substrate roughness (Krechetnikov & Homsy 2005) and confinement due to the reservoir
(Kim & Nam 2017). Much of the extensive literature on the film deposition dynamics
has been summarized in several review articles (Ruschak 1985; Quéré 1999; Weinstein &
Ruschak 2004; Rio & Boulogne 2017).

The classical theory by Landau & Levich (1942) and Derjaguin (1943) gives a
fundamental description of thin film coating, where the deposited film thickness is so thin
that gravity can be neglected. The flow inside the film region is maintained by the balance
of capillarity, characterized by the liquid/air surface tension coefficient γ , and the viscous
forces, characterized by the liquid viscosity η. The film region is connected to a quasi-static
liquid reservoir of a length scale that is much larger than the thickness of the deposited
film. When a plate is withdrawn from a reservoir, this length is set by the capillary
length �c ≡ (γ /ρg)1/2, with ρ the liquid density and g the gravitational acceleration. By
using the method of asymptotic matching, the thickness of the film hf , denoted as the
Landau–Levich–Derjaguin (LLD) film, is shown to have a universal scaling with respect

to the plate velocity U as hf /�c ∼ Ca2/3, where the capillary number Ca ≡ ηU/γ is the

ratio between the viscous and the surface tension forces. Remarkably, this Ca2/3 power law
has been demonstrated to be a robust relation in many different systems when a fluid film
is deposited. The only required change in the scaling relation is to replace the capillary
length by the corresponding characteristic length of the system. For example, the film
thickness is rescaled by the fibre radius for the case when a cylindrical fibre is withdrawn
from a bath (White & Tallmadge 1966; James 1973; Wilson 1988); while in the case of
a long bubble moving in a tube, also known as Bretherton’s problem, the corresponding
length is the tube radius (Bretherton 1961).

Common to fluid coating processes is that they often require an external driving force
to displace the fluid. However, when a droplet with a size smaller than the capillary length
comes in contact with a conical fibre, it moves spontaneously from the tip to the base of
the cone due to capillarity (Lorenceau & Quéré 2004; Li & Thoroddsen 2013). In nature,
this self-propelled mechanism has been exploited by plants (Liu et al. 2015) and animals
(Zheng et al. 2010; Wang et al. 2015) to facilitate water transport at small scales. When
a droplet is translating above a critical velocity, a layer of liquid film is expected to be
deposited on the conical surface at the receding part of the droplet. It has been discovered
recently on the trichome of the Sarrancenia that the deposited film provides a wetted
surface, enabling later water droplets to be transported at a velocity several orders of
magnitude larger than found in other plants (Chen et al. 2018). Despite the importance
of understanding the film deposition and potential implications for biological evolution
in plants and giving a path to very fast droplet transport, the film deposition has not
been studied before on conical geometries. Previous fluid coating studies have assumed
a no-slip condition at the fluid–solid boundary, i.e. no relative motion between the fluid
and the solid boundary. Interestingly, slip lengths have been reported to be as large as
a few micrometres for fluids such as polymer melts (Bäumchen, Fetzer & Jacobs 2009)
and for superhydrophobic surfaces (Rothstein 2010). When the droplet size is decreased
to a few micrometres or below, effects due to the fluid slip on solid surface may become

significant, as demonstrated in dynamical fluidic systems (Lauga, Brenner & Stone 2007;
Bocquet & Charlaix 2009) such as the dewetting of microdroplets (McGraw et al. 2016;
Chan et al. 2017) and of liquid films (Fetzer et al. 2005). However, the influence of slip on106
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the droplet dynamics and film deposition is not known for the directional droplet motion on
a cone.

Although conical solid structures are common in nature and appear as a component in
industrial processes, modelling of the droplet fluid flow on such geometries is lacking.
In our recent article (Chan, Yang & Carlson 2020), we provide a physical picture of the
spontaneous motion of the droplet based on the mismatch between the equilibrium contact
angle and the apparent contact angles. This generates flow in the contact line regions and
maintains the droplet motion. In this study, we implement the time-dependent lubrication
equation developed in Chan et al. (2020) to investigate the evolution of the liquid–air
interface of the capillary driven droplet motion on a smooth conical fibre. The properties
of a deposited film generated by a self-propelled droplet are studied for small cone angles
and for a wide range of slip lengths. Apart from the continuum approach, the simple
geometry of a conical shape allows us to study fluid flow using molecular dynamics (MD)
simulations. Results from the MD simulations will be used as a verification for the droplet
shape predicted by the lubrication model. In fact, the approach of MD simulations has
previously been implemented to study the wetting dynamics at the nanoscale (Nakamura
et al. 2013), the slip condition at a contact line region (Qian, Wang & Sheng 2003), the
frictional force on a sliding droplet (Koplik 2019) and the influence of physico-chemistry
of the water/substrate interface on the droplet dynamics (Johansson, Carlson & Hess 2015).

2. Mathematical formulation

An axisymmetric viscous droplet with a volume V is placed in contact with a wetted
surface of a conical fibre with a cone angle α � 1, see figure 1(a). We consider a fibre
surface prewetted with a thin layer of the same fluid of thickness ε. The prewetted layer
can be deposited or interpreted as a microscopic precursor film for a perfectly wetting
droplet, i.e. equilibrium contact angle θe = 0◦. The profile of the liquid–air interface is
described by h(r, t), the distance between the interface and the substrate, as a function of
the distance from the vertex of the cone along its surface r and time t. For droplets with a
Bond number Bo ≡ ρgV2/3/γ � 1, gravitational effects can be ignored. We consider the
Reynolds number Re ≡ ρUV1/3/η � 1 and the flow inside the droplet is described by the
Stokes equations and the continuity equation.

2.1. Lubrication approximation on a cone (LAC)
Consider the flow in the droplet as u(r, θ), here θ is the polar angle measured from the
axis of rotation. Supposing the polar angle of the free surface of the droplet is very small,
the flow is primarily in the radial direction. By using these approximations, the Stokes
equations reduce to the lubrication equations here given in spherical coordinates (Chan
et al. 2020),

∂p
∂r

= η

r2θ

∂

∂θ

(
θ

∂u
∂θ

)
, (2.1)

∂p
∂θ

= 0, (2.2)

where p is the pressure and u is the radial velocity inside the droplet/film.
To describe the fluid flow (2.1) and (2.2) need to be accompanied by several boundary

conditions. At the liquid–air surface, the tangential stress is zero as we neglect viscous
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FIGURE 1. (a) A description of the system at study, where a droplet is moving across (from left
to right) a conically shaped fibre (grey shaded region). Droplet profiles h(r, t) are shown at three
different times on the fibre with a cone angle α. From t = 0 to t = 0.89, there is a fast relaxation
of the droplet before it slowly spreads across the fibre. (b) The centre of mass of the droplet xc
plotted as a function of time. The diamond markers correspond to the two profiles shown in (a),
with a cone angle α = 0.01 rad, a prewetted film thickness ε = 10−3 and a slip length λ = 0.

effects in the air

∂u
∂θ

= 0 at θ = α + φ. (2.3)

At the wetted substrate, the normal velocity is zero and we assume a radial velocity
described by the Navier-slip condition (Lauga, Brenner & Stone 2008)

u
λ

= 1

r
∂u
∂θ

at θ = α, (2.4)

where λ is the slip length.
Solving (2.1) and (2.2) with the boundary conditions (2.3) and (2.4) gives the velocity,

and by imposing mass conservation of the liquid we get

∂h
∂t

+ 1

rα + h
∂

∂r

[
r4α4

2η

∂p
∂r

{
1

8

[
3

(
1 + h

rα

)4

− 4

(
1 + h

rα

)2

+ 1

]

− 1

2

(
1 + h

rα

)4

ln

(
1 + h

rα

)
− λh2

2r3α3

(
2 + h

rα

)2
}]

= 0. (2.5)
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The pressure gradient inside the liquid is generated by the Laplace pressure p = −γ κ
where κ is the curvature of the liquid–air interface, which for α � 1 simplifies as

κ = h′′(
1 + h′2

)3/2
− 1 − αh′

(rα + h)
(
1 + h′2)1/2

, (2.6)

with ()′ ≡ ∂()/∂r. The second term of the curvature is derived by using a rotation
matrix with the cone angle α � 1. We keep the h′ terms as the interface slope is not
always small at the droplet scale. We will see in § 3.1 that the viscous effect is weak
in the droplet and it quickly adopts a quasi-static shape at the leading order, which is
determined by the uniform pressure condition i.e. κ = constant. Although the flow field
computed from the lubrication equation is inaccurate at the droplet scale, the correct
quasi-static shape determines the flows in the contact line regions where lubrication
approximation does work. Hence, (2.5) is still valid for computing the evolution of the
interface.

2.2. Finite element method
We solve a coupled system of equations consisting of (2.5) and the Laplace pressure
equation p = −γ κ numerically by using the finite element method. For the pressure
equation, we split it into the two following equations:

p = −γ

[
q′(

1 + h′2
)3/2

− 1 − αh′

(rα + h)
(
1 + h′2)1/2

]
(2.7)

and

q = h′. (2.8)

The variables we solve for are h(r, t), p(r, t) and q(r, t). These fields are discretized
with linear elements and solved as a coupled equation set by using Newton’s method
in the FEniCS library (Logg, Mardal & Wells 2012). We use both an adaptive time
stepping routine and an adaptive spatial discretization to refine the spatial resolution
around the receding tail and the advancing front of the droplet with a resolution of
	r = 10−4V1/3; here, 	r is the difference of r between two nodal points. The numerical

simulations are initialized with the initial profile h(r, t = 0) = ε + A[1 − tanh(r − ri)
2]

where A determines the volume of the droplet and ri determines the initial position
of the droplet’s geometric centre. The simulations are insensitive to the initial droplet
shape after a very short initial relaxation, see figure 1 and appendix B. Further, we
impose the following boundary conditions at the boundary ∂Ω of the numerical domain:
p(r = ∂Ω, t) = p(r = ∂Ω, t = 0) and ∂h(r = ∂Ω, t)/∂r = 0.

2.3. Molecular dynamics simulations
We can test our hydrodynamic model by means of a ‘numerical experiment’ – a classical
MD simulation of a liquid drop placed on a solid cone, based on standard methods (Frenkel
& Smit 2002). We consider a generic viscous liquid consisting of spherically symmetric
atoms with a Lennard–Jones (LJ) interaction, bound into linear tetramer molecules by a
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Case x1 x2 Rout N

A 30 40 75 117 880
B 30 45 70 164 120
C 30 45 70 280 280

TABLE 1. Initial geometry of the drops.

FENE (finitely extensible nonlinear elastic) potential

VLJ(X ) = 4E

[(X
σ

)−12

−
(X

σ

)−6
]

VFENE(X ) = −1

2
kFX 2

0 ln

(
1 − X 2

X 2
0

)
, (2.9a,b)

where X is the separation between the centre of mass of two atoms. The LJ potential
acts between all pairs of atoms within a cutoff distance 2.5σ , and is shifted by a linear

term so that the force vanishes at the cutoff. The FENE interaction (with parameters kF =
30E/σ 2 and X0 = 1.5σ ), following Grest & Kremer (1986) acts between adjacent atoms
on the chain. The advantage of a molecular rather than a monatomic liquid is that the
vapour pressure is very low and the liquid/vapour interface is relatively sharp and easy to
visualize. The solid is a conical section of a regular lattice whose atoms are mobile but
bound to their lattice sites by linear springs with stiffness 100E/σ 2. The simulations are
conducted in a canonical/NVT ensemble, where the temperature is fixed at 0.8E/kB using a
Nosé–Hoover thermostat. This particular solid/liquid system has been used in a number of
previous simulations (Busic, Koplik & Banavar 2003; Koplik et al. 2006; Koplik & Zhang
2013; Koplik & Maldarelli 2017), and its properties are well characterized. The liquid has
bulk number density 0.857σ−3, viscosity 5.18m/(στ) and liquid–vapour surface tension
0.668E/σ 2, where m is the mass of the liquid atoms and τ = σ(m/E)1/2 is the natural time
scale based on the LJ parameters. Furthermore, the liquid is completely wetting: a drop
placed on flat solid surface with the same density and interactions spreads completely into
a thin film.

The simulation begins with all atoms on face-centred cubic (fcc) lattice sites, within
a rectangular box of length 256.5σ and sides 171σ , with repulsive confining walls in the
long (x) direction and periodic boundary conditions on the sides. For the cone we select all
atoms in an fcc lattice of number density 1.06σ−3 within a radius Rco(x) = 3 + x tan α (in
the unit of σ ) of the central axis, which runs in the x-direction through the centre of the
box, and where α = 0.1 rad. The resulting solid has 74,362 atoms. The liquid initially
occupies a disc-shaped region near the left edge, x1 < x < x2 and Rco(x) < R < Rout
consisting of all atoms outside the cone but inside an outer radius Rout. We have studied
two cases (A, B) where the remaining cone surface is initially dry and one case (C) where
there is also a liquid (prewetting) film of thickness 4σ . The parameters for the various cases
and the number of fluid atoms N is given in table 1. The simulation temperature starts at
a low value in the solid phase and increases linearly to the final value, 0.2 → 0.8E/kB
over 250τ , to prevent the liquid atoms from leaving the cone, and subsequently the drop is
allowed to evolve freely at the final temperature.
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3. Results and discussions

3.1. Numerical solutions of the LAC
We first present numerical simulation results for the typical evolution of the droplet profile
obtained from the lubrication approximation on a cone. In the following, all lengths are
rescaled by V1/3 and time is rescaled by V1/3η/γ . The dimensionless parameters are the
cone angle α, the thickness of the prewetted layer ε and the slip length λ.

A typical dynamical process is shown in figure 1(a). First the droplet relaxes from an
initial shape (t = 0) to a quasi-static shape (t = 0.89) in a short time. At t = 0, the initial
shape gives a non-uniform curvature and hence a non-uniform pressure inside the whole
droplet region. The pressure gradient generates flow inside the droplet. At t = 0.89, a
nearly uniform pressure distribution is achieved in the bulk of the droplet, but a large
pressure gradient is created at the two edges of the droplet, which are commonly referred
to as the ‘contact line regions’, see figure 2(b) for the pressure distribution at t = 256.
A concentration of stresses at the contact line would be expected (Huh & Scriven 1971).
After the quick initial relaxation, the droplet starts to propagate toward the thicker part of
the cone. The position of the droplet is described by the centre of mass of the droplet, for
α � 1, defined as

xc = π

∫ ra

rr

h(h + 2αr)r dr, (3.1)

which is plotted as a function of time in figure 1(b). Here rr is the apparent receding
and ra is the apparent advancing contact line positions, which are defined in appendix A.
The numerical simulations suggest that the droplet adopts a quasi-static shape during
the directional spreading. For example, the profile for t = 256 is plotted as the black
solid line in figure 2(a), and the pressure distribution is shown in figure 2(b). Given
the uniform pressure/curvature condition, one can solve for a static droplet profile, see
the details of the computation in § 3.5. The static profile obtained in this way is plotted
as the red dashed curve in figure 2(a) for the same droplet position as obtained from
the LAC at t = 256. The agreement between the two profiles again demonstrates that
the droplet profile is quasi-static on the droplet scale. As the droplet shape appears
more round than flat, it may affect the validity of the lubrication approximation in the
contact line regions where the viscous effects are significant. We zoom into the advancing
and receding contact line regions and compute the pressure gradient p′ rescaled by its
maximum magnitude and the interfacial slope h′, which are shown in figures 2(c) and
2(d). We observe that when approaching the contact line regions, the pressure gradient p′

increases from almost zero in the bulk of the droplet, and along with it the interface slope
decreases. The maximum magnitude of the pressure gradient in both the receding and the
advancing regions corresponds to an interfacial slope of magnitude < 0.1 rad (5.7◦) which
presumably fulfils the small slope assumption.

As shown in figures 2(c) and 2(d), the pressure gradients at the receding and the
advancing contact line regions are large. By zooming into these regions of the droplet
(see figure 3) at early times, we observe large interface curvatures, consistent with what
one would expect from the results of a large pressure gradient. We want to highlight that
as the droplet starts to move across the cone, a film is formed at the receding region. Since
the later self-propelling state is independent of the initial conditions, the droplet properties
such as the deposited film thickness and the droplet velocity are a function of the droplet
position on the cone.
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FIGURE 2. (a) Solid line: droplet shape on a conical fibre (grey shaded region) with a cone

angle α = 0.01 rad at t = 256 obtained from a numerical solution of the LAC with ε = 10−3

and λ = 0. Red dashed line: static droplet shape obtained from solving the uniform curvature

condition κ = constant. (b) Solid line: the Laplace pressure p as a function x obtained from LAC.

Red dashed line: the Laplace pressure of a static droplet, where the domain of the static droplet is

between x = 3.36 and x = 4.83. In (c,d) the pressure gradient is rescaled by its maximum value,
denoted as p̄′ and the interface slope h′ in the receding region in (c) and the advancing region
in (d).
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FIGURE 3. (a) Interface dynamics at the receding region of the droplet, showing the formation
of a deposited film from t > 2.18. (b) The interface dynamics at the advancing region of the
droplet. The far field conditions of the profiles at both ends match to a constant prewetted fluid
layer of thickness h = ε = 10−3 and we have α = 0.01 rad and λ = 0.

3.2. Comparison of the numerical solutions of the LAC with molecular dynamics
simulations

We compare the results for the case of cone angle α = 0.1 rad from the numerical solutions
of the LAC and the MD simulations. The comparison serves also as a verification of our
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FIGURE 4. (a) The centre of mass of the droplet xc as a function of time t obtained from the MD
simulations (symbols) for three different cases and the numerical solutions of the LAC (lines)
for λ = 0 and α = 0.1 rad. The red circles are results obtained by multiplying the time in case
C with a prefactor 2.8. (b–d) Comparison between droplet profiles obtained from the LAC and
the MD simulations. For each comparison, the profiles are chosen such that xc is the same. Both
(b,c) are for the case C of the MD simulations (wetted substrate) but at two different droplet
positions; (d) is for case A (dry substrate) of the MD simulations. Red dashed curves: profiles
from LAC. Green dots: liquid molecules of the droplet. Pink colour: the cone substrate.

lubrication model and can help reveal nanoscopic physical effects. We first compare the
centre of mass of the droplet xc as a function of time in figure 4(a). For the LAC, we
have used two different values of prewetted layer thickness, i.e. ε = 10−4 and 10−3, to
highlight their weak influence on the results. We have three cases for the MD simulations.
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We see that droplets on the dry surface (case A and case B) move slower than the droplet
on the wet surface (case C, with the rescaled thickness of the prewetted layer = 0.065).
This is consistent with the expectation that the wetted layer reduces the frictional force
between the droplet and the substrate. When comparing with the LAC results, we find
that the results from the MD simulation (for both the dry surface and wet surface cases)
have a larger non-dimensional velocity. When we multiply the time scale in MD by a
prefactor of 2.8 for case C (with a wetted layer), we effectively shift the data from MD
horizontally to the right and obtain the results represented by red circles, which makes
the two models give the same results. The difference in time scale is equivalent to the
difference in drop velocity, and this is related to the strength of the ‘driving force’. In
the MD calculation the liquid/solid interaction strength controls the speed of the drop
(as well as the slip length), but this parameter does not appear directly in the continuum
calculations. Indeed, in continuum calculations of wetting usually the contact angle (for
partially wetting cases) and the van der Waals interaction (for the completely wetting
case) controls the motion. Here, the prewetting film thickness and the assumption that
it is asymptotically constant indirectly incorporate this information. There is no obvious
way to match this aspect of the molecular and continuum calculations in advance and it is
no surprise that they differ. Furthermore, the presence of slip in the simulations is rather
unclear because the translation velocity of the drop is much smaller than the thermal
velocity of the atoms, by a factor of 10−3 or less, and it is not possible to resolve the
flow field inside the drop. However, simulations of the same liquid in shear flow along a
planar solid of the same structure as the cone, under otherwise identical conditions, have
a velocity field which extrapolates to zero roughly halfway between the innermost liquid
and outermost solid atoms. If one (naturally) identifies the latter point as the liquid/solid
boundary then the slip length is at most a small fraction of an atomic diameter, which is
essentially zero. The shapes of the droplet are shown in figure 4(b–d), where the same
droplet shapes are predicted by the LAC and the MD when comparing for the same centre
of mass of the droplet. However, no deposited film is observed for all cases in the MD
simulations.

The effects of the thin prewetted layer are illustrated when comparing a drop advancing
on a cone at the same centre of mass position (xc = 3.45) for the wetted case in figure 4(c)
with the dry case in figure 4(d). The lighter colouring of the liquid region as compared
to figure 4(b,c) reflects the fact that there are fewer liquid molecules present in the dry
case. For the dry case, the advancing meniscus of the drop is irregular at molecular scales,
corresponding to individual molecules hopping to attractive sites on the surface, which is
also the case for wetting drops advancing on a dry flat surface (D’Ortona et al. 1996). The
receding meniscus region is an uneven film as well, zero to two molecules in thickness, and
this behaviour is also present in the prewetted case. The absence of a continuous trailing
film for these drops is surprising because one would expect a completely wetting liquid
to remain in contact with a solid unless removed by an external force, and the lubrication
calculations in this paper incorporate this assumption. One possible explanation is the
finite size of the simulated droplets, which may not have enough molecules to exhibit
all features of continuum behaviour. A second, more specific explanation involves the
curvature of the surface. Liquid adjacent to a flat surface tends to form pronounced
layers and, at least for a crystalline solid, there is an ordered structure in each layer
because the molecules favour positions in register with the lattice. High curvature disrupts
the usual lattice structure and could thereby weaken the liquid-solid attraction. In this
vein, it is known that solid curvature has a significant effect on slip lengths, which
are controlled by the same interaction (Chen, Zhang & Koplik 2014; Guo, Chen &
Robbins 2016).
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FIGURE 5. Lines: the capillary number Ca as a function of the centre of mass of the droplet xc
obtained from LAC. Symbols: the relation given by (3.3) with different values of c. The cone
angle is α = 0.01.

3.3. Droplet velocity
We consider here only cases in which the prewetted layer is much thinner than the
droplet, i.e. ε ∈ [10−4, 10−3], but we vary the slip length across a wide range λ ∈ [0, 20].
When the prewetted layer is thick, e.g. ε > 10−2, it becomes unstable quickly due to
Rayleigh–Plateau instability (Eggers & Villermaux 2008). To investigate the droplet
dynamics, we define the capillary number as the dimensionless velocity of the droplet,
namely

Ca ≡ dxc

dt
. (3.2)

3.3.1. Dependence of droplet velocity on the thickness of the prewetted layer and the slip
length

We start by looking at cases when both the prewetted layer and the slip length are
small, i.e. ε � 1 and λ� 1. In models of dynamical wetting (Bonn et al. 2009; Snoeijer
& Andreotti 2013), these microscopic lengths act as a cutoff length scale for moving
contact line singularity and the length scales appear in a logarithmic term of the viscous
dissipation. In Chan et al. (2020), by using asymptotic matching, it is shown that the
capillary number scales as Ca = θ 3

a /9 ln(c/λ), where θa is the advancing apparent contact
angle of the corresponding static droplet and c is a fitting parameter. We here propose a
similar relation but include the prewetted layer thickness ε as

Ca = θ 3
a

9 ln(c/[λ+ ε])
. (3.3)

With an adjustment of the fitting parameter c, this relation describes well the results from
the LAC as shown in figure 5, but gradually becomes invalid when λ is no longer small.

When exploring a wider range of slip length λ, one expects a change in the flow profile
inside the droplet, from a Poiseuille flow for the case of no-slip to a plug flow as we
approach free slip (Münch, Wagner & Witelski 2005). Figure 6(a) shows Ca as a function
of xc for different slip lengths, where droplets move faster for larger slip lengths as the
viscous dissipation is decreased. At large slip lengths, it is expected that the term with the
slip length in the governing equation (2.5) dominates over the other terms, thus λ can be
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FIGURE 6. (a) The capillary number Ca plotted as a function of the centre of mass of the
droplet xc for different slip lengths. (b) The rescaled Ca by λ as a function of xc. Parameters:
ε = 10−3 and α = 0.01 rad. We rescale the data in (a) as Ca/λ, which collapses the data onto a
single curve for λ > 1.

scaled out from the equation by defining t̄ ≡ λt. This implies Ca scales linearly with λ.
We plot Ca rescaled by λ in figure 6(b), and find that Ca/λ collapse onto a single curve for
λ > 1, consistent with our expectation. An alternative derivation can also be made based
on a balance between the rate of change of capillary energy and the viscous dissipation.
The viscous stress scales as ∼ ηU/λ, giving a bulk dissipation ∼ ηVU2/λ2, which is much
smaller than the dissipation due to friction at the substrate ∼ ηAwU2/λ; here, Aw is the
wetted area. By balancing the dominant viscous dissipation with the rate of change of the
surface energy ∂(γ Aw)/∂t ∼ γ xcαU gives U ∼ λ.

3.3.2. Dependence of droplet velocity on the cone angle and the droplet position
As there is no directional spreading when α = 0, it is natural to expect that a droplet

moves faster at larger cone angles. This is true when comparing Ca at the same cone
radius, as shown in figure 7(a) in which Ca is plotted as a function of Rc ≡ xc tan α. The
results from the LAC agree nicely with the matching results of (3.3) for the three different
values of α using the same value of c = 2. Remarkably, the agreement is good even when
the apparent contact angle is as large as θa ≈ 1 rad, for example when Rc ≈ 0.06 and
α = 0.03 rad. Another feature we observe is that Ca decreases when the droplet is at a
position of larger cone radius for a fixed cone angle, namely the droplet slows down when
moving to the thicker part of the cone. When plotting Ca rescaled by α in figure 7(b), the
results for the three different cone angles nearly collapse onto a single curve.

We have shown that the cone angle and the cone radius give opposite effects to the
droplet velocity. It might be interesting to see how the droplet velocity depends on the
distance from the tip of the cone, particularly the length of a fibre can be a more important
parameter for certain functionality. In figure 7(c), we show Ca as a function of the droplet’s
centre of mass xc. Remarkably, a non-monotonic behaviour is observed. In the limit of
large distances from the tip, droplets on cones with smaller cone angles move faster when
comparing at the same xc. When decreasing xc, there are changes of relative strength
of Ca. For example, at xc = 2.3, Ca for α = 0.03 rad is even higher than that for α =
0.01 rad. The reason for the non-monotonic behaviour is that two factors are playing roles
when comparing at the same xc, namely α and Rc. The influence of the cone radius Rc is
dominant over the cone angle effect when xc is large, thus droplets move faster at smaller α.
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FIGURE 7. Lines: results from LAC. Symbols: the relation given by (3.3) with c = 2. The
droplet capillary number Ca plotted as a function of Rc ≡ xc tan α in (a), and as a function
of the centre of mass of the droplet xc in (c), whereas in (b) Ca is rescaled by α plotted as a
function of Rc. Parameters: ε = 10−3 and λ = 0.

The cone angle effect becomes more important when xc is small. Our results demonstrate
that a sensitive control of the geometrical factors such as α and Rc is necessary for optimal
droplet transport on these structures.

3.4. Film deposition
A film is formed at the receding region of the droplet when the droplet moves to the thicker
part of the cone, as already shown in figure 3(a). We refer to the region that connects the
prewetted layer and the deposited film as the film edge region. One can observe from
figure 3(a) that the film edge region (around r = 1) propagates much slower than the
motion of the droplet. Hence a long deposited film is generated and the film profile is
found to remain steady within the simulated time. However, the film would eventually
become unstable due to the Rayleigh–Plateau instability, but the time scale for the growth
of the disturbance is here greater than the time for the droplet to spread across the cone.
For films of nanometric thickness, they can be stabilized by intermolecular forces (Quéré,
di Meglio & Brochard-Wyart 1990).

3.4.1. Dependence of the deposited film on the cone angle
We first consider cases of no slip (λ = 0). The profiles of the deposited films are shown

in figure 8(a) for α = [0.01, 0.03, 0.05] rad. It is found that the film thickness increases
with both α and r. It is also important to understand the influence of the cone angle on the
film thickness when comparing at the same cone radius. We hence plot in figure 8(b) the
profiles of the films as a function of R ≡ r sin α. The film is thicker for larger cone angles.
As will be explained in § 3.5, this is mainly due to the larger capillary number for larger
cone angles.

3.4.2. Dependence of the deposited film on the slip length
As droplets move faster at larger slip lengths, one may expect that a thicker film is

deposited according to the LLD model. However, our analysis shows the opposite results

(figure 9) with α = 0.01 rad and ε = 10−3. The film thickness decreases with the slip
length. We find two asymptotic film profiles. One is for the limit of small slip length (λ <
10−4). Another one is for the limit of large slip length (λ > 1), which can be understood by
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the argument that the slip length is absorbed into the time variable t̄ as explained in § 3.3.
Hence, the droplet profile and the deposited film thickness become independent of the slip

length. A dramatic change of film thickness appears for slip length in between 10−4 and 1.
The difference of film thickness between these two limits is of two orders of magnitude.
Our results show that when the droplet size is too small, film deposition is not possible
as the film thickness computed from our model can be of sub-molecular size. This is
particularly relevant for large slip lengths, for which the deposited film is much thinner
and the large slip regime can be realized usually for droplet size of micrometres or below.

3.5. Asymptotic matching
Although we have shown the interface profiles h(r) of the deposited films (figures 8
and 9), it is not clear yet how a particular film thickness is related to the capillary number.
For droplets spreading on a cone, the motion of the droplet is self-propelled, and the
capillary number is a function of the droplet position xc (or time t). Nevertheless, at
each moment in time, the droplet deposits a portion of film with a particular thickness
hf = hf (xc). Hence, we can link a particular film thickness to the corresponding Ca at
each droplet position on the cone. The procedure of determining hf is given in appendix A.
A natural way to rescale the film thickness hf is by using the corresponding cone radius
Rf ≡ rr sin α where the film is deposited. The rescaled hf /Rf is plotted as a function of Ca
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FIGURE 10. (a) The rescaled film thickness hf /Rf as a function of the capillary number Ca for

different slip lengths. Lines: results from the lubrication approach (LAC). Parameters: ε = 10−3
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The dashed line represents the asymptotic relation h′′
o = 1/Rf when Rf � 1. (c) The value of a2

obtained from the two-dimensional lubrication equation for the film region as a function of the

rescaled slip length λ̄ ≡ λ/hf .

for a wide range of slip length λ in figure 10(a) with log–log axes. First, the 2/3 scaling is
not observed for any cases, even for the no-slip case which we would expect from the LLD
model. Second, the local slope (in log scales) decreases with the slip length, and becomes
negative when the slip length > 10−2.

To understand better the numerical solutions of the LAC, we revisit the approach of
asymptotic matching. We consider two regions of the liquid–air interface profile: the film
region and the static droplet region, which are described by two different force balance
equations. We then match the asymptotic profiles of these two regions to determine the
deposited film thickness.

As the film thickness is much smaller than the cone radius, we propose that the profile in
the film region locally is described by a steady solution h = h2d(x) of the two-dimensional
lubrication equation. In the droplet frame, translating with a non-dimensional velocity
Ca, the rescaled liquid–air interfacial profile H(ξ) = h2d/hf , here ξ = xCa1/3/hf , follows
(Snoeijer et al. 2008)

∂3H
∂ξ 3

= 3

H
(
H + 3λ̄

) (
1 − 1

H

)
, (3.4)
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obtained from LAC in the region connecting the flat film and the droplet for different slip lengths
λ and droplet positions (characterized by rr in b,d, f ). The parameters are the cone angle α =
0.01 rad and the prewetted layer thickness ε = 0.001. (b,d, f ) The rescaled profiles h/hf as a

function of (r − ro)Ca1/3/hf . The solid lines are the numerical solution of (3.4) with values of

λ̄ ≡ λ/hf computed by the corresponding values of λ and hf from the LAC.

where λ̄ ≡ λ/hf . We impose a flat film boundary condition H(ξ → −∞) = 1, and hence

close to the flat film, we can write H = 1 + δ exp[31/3ξ/(1 + 3λ̄)1/3], with δ � 1 (Oron,
Davis & Bankoff 1997). The value of δ is arbitrary due to the translational invariance of
(3.4). Here, we set δ = 5 × 10−7 when ξ = 0. When ξ → ∞, the profile of the film has
to match to the droplet shape at the receding region, thus H tends to ∞, the asymptotic
solution of (3.4) is described by H = a1ξ + a2ξ

2. The value of a1 and a2 are determined by
the numerical solution of (3.4). A comparison between the similarity profile H(ξ) and the
rescaled profiles from LAC in the region connecting the flat film and the droplet is given
in figure 11 for three different slip lengths: λ = 0, 10−2 and 7. The profiles from LAC are
shifted manually by ro so that they match the best with the solution of (3.4). The value of
ro is close to rr (difference within 2 %). Note that for non-zero slip lengths, as hf varies

with droplet positions, λ̄ has different values at different droplet positions even though λ
is the same. We can see in figure 11 that the similarity profiles describe well the profiles
from the LAC particularly at the region closer to the flat film. Away from the flat film, the
profiles from the LAC bend to match the droplet shape.

In the static droplet region, the profile hs(r) is determined by the static equation of
uniform curvature κs obtained by substituting hs(r) = h(r) into (2.6), with a magnitude of
κs that depends on the droplet position on the cone. The problem is closed by including
the boundary conditions hs(r = rr) = 0 and h′

s(r = rr) = 0 at the substrate.
Now we are in a position of matching the two asymptotic profiles in the overlapping

region. As we already impose the condition h′
s(r = rr) = 0 for the droplet region. A natural
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matching condition is equating the second derivatives of the asymptotic profiles. In the
film region,

h′′
2d(ξ → ∞) = 2a2Ca2/3/hf . (3.5)

Matching h′′
2d(ξ → ∞) to the second derivative h′′

o ≡ h′′
s (r = rr) in the static droplet region

gives the film thickness

hf = 2a2(λ̄)

h′′
o(Rf )

Ca2/3. (3.6)

Importantly, as all the cone angles are small, h′′
o is independent of α but only a function

of the cone radius Rf , which is plotted in figure 10(b) in log scales. Note also that a2 is

determined from (3.4) and a function of λ̄ ≡ λ/hf , which is plotted in figure 10(c). We
note that h′′

o = 1/Rf + κs, and thus h′′
o ≈ 1/Rf when Rf � 1, which is represented by the

dashed line in figure 10(b). With the computed values of h′′
o and a2, and using the values

of Ca for each droplet position obtained from LAC, we plot hf /Rf computed from (3.6)
in figure 10(a) as square markers. Remarkably, the results from the asymptotic matching
agree with the numerical results for all slip lengths. Provided the excellent agreement
between the two approaches, we can understand our results in terms of the flow inside the
film and the geometry of the droplet, and hence provide a better picture of the physical
mechanism of film deposition by a droplet moving on a cone.

We first look at the no-slip case. When λ̄ = 0, a2 = 0.669, which is the same value
as obtained from previous studies (Rio & Boulogne 2017). The description of the film
region is the same as, for example, the dip-coating cases. Then why is the 2/3 scaling not
obtained when plotting hf /Rf as a function of Ca? One important aspect in our problem is
that the droplets have a finite size. Hence, there are two length scales: the cone radius and
the droplet radius. In terms of rescaled quantities, this means that the second derivative
h′′

o is not a linear function of 1/Rf , except when Rf � 1, which is already demonstrated in
figure 10(b). When we rescale the results of hf obtained from the LAC by 1/h′′

o and plot
it as a function of Ca in figure 12(a) for three different cone angles. The scaling Ca2/3

is recovered and agrees well with the prediction from asymptotic matching especially for
smaller cone angles.

Next we look at the slip dependence. From figure 10(c), we see a2 is independent of λ̄
when λ̄� 1. Hence for λ� hf , the film thickness becomes independent of λ. As the
typical order of magnitude of hf for a no-slip case is 10−3, hf starts to depend on λ

significantly when λ > 10−3. This is consistent with our numerical results. For λ̄� 1,
we find that a2 = 0.771λ̄−2/3. Substituting this expression of a2 into (3.6), we obtain

hf = 3.667

h′′3
o

(
Ca
λ

)2

. (3.7)

This expression is in perfect agreement with our numerical results from the LAC for λ�
hf in figure 12(b). For droplets moving on a conical fibre, we show already that Ca ∼ λ
when λ� 1, (3.7) then suggests hf is independent of the slip length as shown in figure 9
for λ� 1.

One may expect that the droplet profile does not maintain a quasi-static shape when the
slip length is not small due to significant viscous effects in the entire droplet. However,
the excellent agreement between the results from the lubrication equation on a cone and
the approach of asymptotic matching suggests that the quasi-static assumption is still
valid. The reason might be the large length separation between the deposited film and
the droplet height maintaining a very large difference in time scales, as one can observe
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FIGURE 12. (a) The film thickness hf rescaled by 1/h′′
o as a function of Ca for λ = 0. Symbols

are results from LAC for three different cone angles. The prewetted layer thickness ε = 10−3.
The dashed line is the result from AM: hf h′′

o = 1.34Ca2/3. (b) The film thickness hf rescaled by

1/h′′3
o as a function of Ca/λ for three different slip lengths λ� hf . Symbols are results from

LAC. The dashed line is the result from AM: hf h′′3
o = 3.667(Ca/λ)2.

from the mobility term which scales as ∼ λh2. Thus there is sufficient time for the droplet
to relax to a quasi-static shape when the apparent contact lines move. For the large slip
length regime, elongational flow has been proposed to appear and dominate the viscous
dissipation (Münch et al. 2005), which has been observed for dewetting droplets (McGraw
et al. 2016; Chan et al. 2017). The large slip regime in our model, assuming Poiseuille
flow as the dominating flow structure, is considered as the intermediate slip regime in the
analysis of Münch et al. (2005). For a translating droplet, the effect of elongational flow is
unclear, which requires additional experimental and theoretical studies.

For partially wetting surfaces, the droplet dynamics is the same as for the perfectly
wetting cases if the prewetted layer is thick enough so that van der Waals forces between
the liquid–air and the solid–liquid interfaces can be neglected. A partially wetting droplet
moving on a cone without a prewetted layer will also deposit a film if it moves with a
velocity above a critical value. The properties of the film are expected to be similar to
the wetting cases, namely following the asymptotic relation (3.6), as long as the droplet
maintains an axisymmetric shape.

4. Conclusions

The directional spreading of a viscous droplet on a conical fibre due to capillarity is
investigated for small cone angles and for a wide range of slip lengths by using the
lubrication equation on a cone. The droplet velocity increases with the cone angle and
the slip length, but decreases as the cone radius becomes larger. At the receding part
of the droplet, a film is deposited on the cone surface while the droplet is moving.
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When comparing with our MD simulations, we find that the droplet shapes obtained from
these two approaches are the same. The velocity also shows a similar trend. However, no
deposited film is observed in the MD simulations, which might be due to the nanoscopic
size of the droplet.

The thickness of the deposited film observed in the LAC decreases from hf ≈ 10−3

for the no-slip case (λ = 0) to hf ≈ 10−5 for λ > 1. We show that the film thickness
obtained from the lubrication model can be understood by a similar approach of asymptotic
matching used in the LLD model. For the no-slip limit, the standard Ca2/3 scaling is
recovered only when the length scale is given by 1/h′′

o in the re-scaling. In the limit
of λ� hf , we find another asymptotic regime in which the film thickness scales as
hf h′′3

o ∼ (Ca/λ)2. For the problem we study here, the cross-over of these two regimes

occurs at λ ≈ 10−4 − 10−1. Our results show that manipulating the droplet size, the cone
angle and the slip length provides different schemes for guiding droplet motion and coating
the substrate with a film.
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Appendix A. Determination of rr, ra, hf and Rf

Since the liquid–air interface of the droplet is continually connected to the liquid–air
interface of the prewetted layer/LLD film, we define the domain of the droplet as
follows. We denote the boundaries of the droplet in the receding and the advancing
regions respectively as r = rr and r = ra. We first compute the second derivative of the
profile h′′(r) at a certain time, which is shown in figures 13(a) and 13(b) respectively
in the receding and the advancing regions. The second derivative drops to zero when
approaching the film regions. Since h′′ is non-negative in the receding region, the droplet
boundary r = rr is defined as the position at which h′′(r) drops to below 0.01, i.e.
h′′(r = rr) = 0.01. In the advancing region, r = ra is defined as the position at which h′′(r)
vanishes, i.e. h′′(r = ra) = 0. The thickness of the deposited film at that particular time is
defined as hf (t) = h(r = rr, t) and the corresponding cone radius Rf (t) = rrα. Hence we
can link the film thickness hf to the capillary number Ca at each time.

Appendix B. Dependence on the initial profile

To investigate how the droplet dynamics depends on the initial profile of the droplet,
we here compare the dynamics of two droplets with different initial profiles. The initial
profiles of the two droplets are described in § 2.2 with different values of A and ri, see
figure 14(a). We compare the capillary number as a function of the droplet position in
figure 14(b). We can see after an initial quick relaxation, the later dynamics is independent
of the initial profiles.
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Plants and insects use slender conical structures to transport and collect small droplets,
which are propelled along the conical structures due to capillary action. These droplets can
deposit a fluid film during their motion, but despite its importance to many biological
systems and industrial applications, the properties of the deposited film are unknown.
We characterize the film deposition by developing an asymptotic analysis together with
experimental measurements and numerical simulations based on the lubrication equation.
We show that the deposited film thickness depends significantly on both the fiber radius
and the droplet size, highlighting that the coating is affected by finite-size effects relevant
to film deposition on fibers of any slender geometry. We demonstrate that by changing
the droplet size, while the mean fiber radius and the capillary number are fixed, the
thickness of the deposited film can change by an order of magnitude or more. We show
that self-propelled droplets have significant potential to create passively coated structures.

DOI: 10.1103/PhysRevFluids.6.014004

I. INTRODUCTION

Droplets on slender conical substrates will self-propel due to capillary action [1–10] provided
the droplets are smaller than the capillary length. This principle is used by insects [11,12] and
plants [13–20] for droplet collection. Several studies have focused on mimicking structures found
in nature to control liquid movement [21–27]. Recent work [13] has shown that the conically shaped
trichomes on the underside of the lid of the Sarracenia, a pitcher plant, can transport droplets
with a velocity several orders of magnitude larger than that found in other plants. Enhanced water
transport is the result of surface lubrication of the trichome. The first droplet that slowly spreads
across the trichome deposits a microscopic liquid film, and the following droplets slide along the
lubricating film on the trichome. From a technological point of view, understanding the principles of
film deposition by capillary-driven motion of droplets can provide pathways for relubrication
of slippery liquid infused porous surfaces with conical shapes [6,28] as well as the development of
other multifunctional materials. This lubricating film-coating principle has a fundamental role in
biological phenomena and has untapped potential as a droplet-driven coating technique, yet the
properties of the liquid film are unknown. We study here how droplets deposit lubricating films as
they move along slender structures.

*These authors contributed equally to this work.
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r
axis of rotation
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FIG. 1. (a) A sketch of a droplet on a conical fiber with a local cone angle α. Inset: zoom into the region
connecting the deposited film of thickness hf and the receding edge of the droplet at the fiber radius Rf . The
fiber is prewet with a layer of the same fluid of thickness ε.

Coating a solid substrate with a lubricating liquid film as a way to reduce friction between
substrates has been known since ancient Egypt [29]. The broad relevance of coating processes
have made them widely studied, with great advances in understanding their underlying physical
principles [30–34]. Dip-coating is today one of the most widespread coating techniques [35],
where the solid moves with a velocity U relative to the liquid bath. The foundational work of
Landau-Levich-Derjaguin (LLD) [36,37] has paved the way for a fundamental understanding of
film deposition on solid substrates during wetting. By considering the viscous capillary flow of a
liquid with a viscosity μ and a surface tension γ , LLD predicted that the deposited film thickness
h f , normalized by the characteristic length of the system L, is given by h f /L ∼ Ca2/3 [36,37], where
the Capillary number Ca ≡ μU/γ is the ratio of the viscous and surface tension forces. The LLD
theory was developed for Ca � 1 and when inertia can be neglected. It is a generic scaling and
has proven to be an accurate description of a wide range of coating phenomena, i.e., dip coating of
plates [38], cylinders [31,39,40], and Bretherton bubbles [41]. However, a droplet depositing a film
on a cylinder has a fundamental difference from film deposition from a liquid reservoir; the droplet
size introduces another length scale to the system. The fiber geometry and droplet size are tuneable
parameters to control the coating process [1,2].

II. THEORY AND EXPERIMENT

In the system studied here, a droplet deposits a film as it migrates toward the thicker part of
a prewet conical fiber, driven by the curvature gradient, as shown schematically in Fig. 1. We
investigate the system by combining asymptotic analysis, experiments, and numerical simulations.
The assumptions made are that there is viscous flow driven by capillarity (Ca � 1). Furthermore,
we neglect gravitational effects because the drop size is much smaller than the capillary length, as
is clear from the Bond number, which represents the balance between gravity and surface tension,
Bo = 	ρgV 2/3/γ � 1, where 	ρ is the density difference between the liquid and surrounding
air, V is the droplet volume, and g is the gravitational acceleration. As will be seen below, these
assumptions are verified by our experiments.

A. Asymptotic analysis

We start off by revising the classical LLD theory for the case of a droplet moving on a cylindrical
fiber with radius R by matching asymptotically the quasistatic droplet profile on the fiber hs(x) and
the self-similar deposited film profile (for details, see [4]). By matching the profiles, we show that
the film thickness h f scales with Ca as [4]

h f = 1.338�Ca2/3, (1)
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FIG. 2. (a) The dimensionless characteristic length �/V 1/3 as a function of the rescaled radius R/V 1/3 of a
cylindrical fiber (solid line). The dotted line represents the linear relation, i.e., � = R. Inset: two static droplets
of the same volume in contact with a fiber with R/V 1/3 = 0.03 and 0.51 (indicated by the two red dots),
which demonstrate different droplet shapes when R varies. The deposited film thickness hf predicted by our
asymptotic analysis scales linearly with � for a given Capillary number Ca (dimensionless droplet velocity); see
Eq. (1). From (a) we see that a droplet of a fixed volume coats a thicker film on a thicker fiber. In (b), � rescaled
by the fiber radius R is plotted as a function of V 1/3/R. It shows that for the same fiber radius, a smaller
droplet coats a thicker film on the fiber. (c) Sample images of two droplets taken with optical microscopy
(top views). Left: α = 0.43◦ and R/V 1/3 = 0.038, and right: α = 2.5◦ and R/V 1/3 = 0.27. The numerically
calculated profiles from the lubrication theory on a cone [Eq. (2)] are shown in red for matching V , R, and α.

where � ≡ 1/[∂2hs(x = xcl )/∂x2] is the inverse of the second derivative of the static profile hs(x)
evaluated at the contact line position x = xcl, i.e., where the profile hs(x) meets the solid substrate. A
crucial difference from the classical LLD theory is that choosing � = R only recovers the correct film
thickness in the limit of R � V 1/3. In general, � depends on both the droplet volumeV and the fiber
radius R, which indicates a finite-size effect. To illustrate this point, we plot �/V 1/3 as a function of
R/V 1/3 in Fig. 2(a). In the limit where R � V 1/3, � = R, then the film thickness h f = 1.338RCa2/3

is independent of the droplet volume. However, when R/V 1/3 � 0.15, the droplet size starts to play
a significant role in predicting the deposited film thickness that is much larger than if we would
naively assume � = R. Since �/V 1/3 increases with R/V 1/3 faster than a linear relation, Eq. (1) also
implies that a smaller droplet deposits a thicker film for fixed R and Ca. This property is shown in
Fig. 2(b), in which �/R decreases with increasing V 1/3/R. For the directional spreading of droplets
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on a conical fiber with a small cone angle α, the influence of α on � only appears as high-order
corrections, which are neglected here (see [4] for details). The conical geometry acts as a factor that
generates the spontaneous motion of the droplet and plays a role in determining the magnitude of
Ca. The theoretical prediction for the film thickness dependence on the droplet size and the fiber
radius [see Eq. (1)] can now be compared to experiments and numerical simulations based on the
lubrication theory.

B. Experiments

The conical substrates used in the experiments are prepared by pulling standard borosilicate
glass capillary tubes in a magnetic micropipette puller (Narishige PN-30). The resulting shape of
the capillary tube is a nearly conical fiber with a smoothly varying diameter and gradient, with a
smaller cone angle nearing the tip of the fiber. The gradient in the cone angle varies slowly along the
fiber, thus on the length scale of the droplet the fibers can be treated as ideal. Droplets of silicone oil
with viscosity of μ ≈ 4.9 Pa s, and with air-liquid surface tension γ = 22 mN/m, were deposited
at the fiber tip. Silicone oil is ideal because it is totally wetting, chemically stable, nonvolatile, and
nonhygroscopic. The fiber is prewet by placing a droplet on the tip of the fiber and allowing it to
migrate from one end of the fiber to the other, thereby depositing a film. Prewet film thicknesses
were found to range from 0.27 to 13.87 μm, as determined by optical microscopy (OM) using an
upright microscope (Olympus BX51) with bottom illumination. OM images of the fiber were taken
from above both before and after coating, and they were used to obtain the film thickness. Droplets
of volumes V in the range of 0.009–1.99 mm3, i.e., Bo ∈ [0.02-0.7], were deposited onto the fiber.
Images of the droplet are taken as it migrates along the fiber at a given radius R, and the deposited
film is observed as the droplet passes a given location. To ensure the effects of gravity are not
affecting the dynamics, a similar experiment was performed in which the entire experimental setup
was tilted at different angles to measure if there were any changes in droplet motion in the plane
of gravity. There were no discernible differences in droplet motion, and thus the effects of gravity
are negligible. The radii of the cone at the measured film thicknesses ranged between 22.26 and
103.92 μm and the deposited film thicknesses were measured in the range of 0.17–19.75 μm.

C. Numerical simulations

To give a mathematical description of the droplet flow on the prewet fiber, we turn to the
lubrication approximation for the viscous incompressible flow, when the cone angle α � 1. The
thin-film equation is obtained by reducing the Navier-Stokes equations for flow in films with large
lateral dimensions in relation to the thickness [42,43], in combination with mass conservation. A
detailed derivation of the lubrication approximation on a conical geometry for α � 1 is found in
[3]. Note that we impose a no-slip condition at the solid substrate and no-shear stress at the free
surface. The axisymmetric liquid-air interface profile is given by h = h(r, t ), defined as the distance
between the interface and the substrate, as a function of the radial distance from the vertex of the
cone r and time t . The evolution of the free surface is described by [3,4],
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∂r
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∂ p
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)
= 0, (2)
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The capillary pressure gradient in the liquid generates the flow, and the pressure p = p(r, t ) reads

p = −γ
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where the expression is simplified for α � 1 [3,4]. Equations (2) and (4) are discretized by linear
elements and numerically solved with a Newton solver by using the open source finite-element code
FENICS [44]; additional details about the numerical approach are found in [4]. The initial condition
is a droplet smoothly connected to a prewet film of thickness ε. At the two boundaries (δ
) of the
numerical domain, we impose h(δ
, t ) = ε and p(δ
, t ) = γ /R(δ
), where R(δ
) is the radius
of the cone at the boundaries. We note that only the droplet volume V is important, and the initial
droplet shape does not affect the results.

III. RESULTS AND DISCUSSION

We start by comparing the droplet spreading dynamics on two cones with α = 0.43◦ and 2.5◦,
where the droplet quickly relaxes from its initial condition to its quasistatic shape and then starts to
translate to the thicker part of the fiber. When we overlay the experimental measurement with the
numerical simulations, as shown in Fig. 2(c), we see that the two results are in close agreement.
By zooming into the trailing edge of the droplet, both the experiment and the numerical simulation
show the deposition of a film of different thickness from that of the prewet film ε.
Next we turn to characterize the thickness of the film during the droplet spreading dynamics on

the fiber. To determine the Ca, we extract the droplet velocityU measured at its center of mass. The
film is measured on the cone after the droplet has deposited the film, which is stable throughout the
observation time in the experiments and the numerical simulations. The Rayleigh-Plateau instability
is expected to take place at much longer times as the time scale of the fastest growing mode for a film
coated on a cylinder with similar radius is predicted to be more than an order of magnitude longer
than both the experimental observation time and the simulation time. Since there is a slight gradient
in the cone angle along r in the fiber used in the experiments, we extract the cone angle locally at
a given position on the cone with radius R = R f . Here R f is the cone radius in the receding region,
defined based on the droplet profile; see [4]. The deposited film thickness h f is then a function of
α, R f , V , and ε. We combine all the experimental measurements and the numerical predictions of
h f ∈ [0.17− 19.75] μm, i.e., for α ∈ [0.35− 2.3]◦, in Fig. 3(a), and they are in good agreement.
The film thickness is not uniform along the fiber for a fixed cone angle, but increases with the cone
radius R f . The film thickness h f increases by roughly one order of magnitude when the cone angle
α is varied from 0.35◦ to 2.3◦.
To further compare the theory to the experiments and numerical simulations, we rescale our

measurements according to Eq. (1) and also plot the analytical prediction; see Fig. 3(b). Since
the motion of the droplet is driven by capillarity, i.e., it is self-propelled, the droplet velocity is a
function of the position on the cone. The deposited film thickness h f rescaled by � obtained from
the experiments and the lubrication theory on a cone is shown as a function of Ca in Fig. 3(b). When
comparing the results (1) predicted by the asymptotic matching, the experiments, and the numerical
simulations, we observe that they are in close agreement, especially for the smallest cone angles.
When α increases, there is a slight deviation from 2/3 scaling observed in the numerical simulations
with a slightly larger film thickness than predicted from Eq. (1), likely a consequence of the reduced
separation of length scales between the film thickness h f and the droplet size V 1/3.
We show that self-propelled droplets have a significant potential to create passively coated

structures. By combining an asymptotic analysis, experiments, and numerical simulations of the
lubrication equation, we have demonstrated that a droplet that moves on a fiber can deposit a film
with a thickness h f , controlled by the droplet’s capillary number and the characteristic length �. The
quantity � is a geometric factor that is linear with respect to the fiber radius Rwhen R/V 1/3 � 1, i.e.,
the droplet is much greater in size than the fiber radius. Otherwise, �/V 1/3 increases significantly
with R/V 1/3 when R/V 1/3 � 0.15. Our finding has direct implications for control of film deposition
during spreading, e.g., if we fix the fiber radius, decreasing the droplet size can increase the
thickness of the deposited film by an order of magnitude or more at the same Ca. Coating by
droplets introduces novel design features that do not exist in classical coating techniques where
the substrate is connected to a liquid reservoir. For a droplet moving on a cylindrical fiber driven
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FIG. 3. (a) The deposited film thickness hf as a function of the cone radius Rf and the cone angle α.
Both axes are normalized by V 1/3. Symbols are experimental data and curves are numerical results from the
lubrication theory on a cone (LAC). The prewet layer thickness ε in both the experiment and the theory is
controlled within a range of 0.27-13.87 μm. (b) The film thickness hf rescaled by � as a function of the
capillary number Ca. The solid line (AM) is the result of asymptotic matching given by Eq. (1).

by external forces, e.g., electric, magnetic, and gravitational, the deposited film thickness follows
Eq. (1), whereas Ca depends on the magnitude of the driving force. Our findings are expected to
be relevant for any droplet coating application involving a slender geometry, and they may help
shed light on why slender conical structures have evolved in a diverse set of biological systems to
facilitate efficient droplet transport.
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